The morphological evolution kinetics of a bicrystal thin film induced by anisotropic surface drift diffusion and driven by the applied electrostatic field is investigated via self consistent dynamical computer simulations. The physico-mathematical model, which is based upon the irreversible thermodynamic treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], provided us with auto-control on the otherwise free-motion of the triple junction at the intersection of the grooving surface and the grain boundary, without having any a priori assumption on the equilibrium dihedral angles. The destruction of the symmetry of the freshly formed grain boundary grooves under the anisotropic surface diffusion driven by the concurrent action of the capillarity and electromigration is observed. After prolonged exposure times the applied electric field above the well defined threshold level modifies Mullins’ familiar stationary state time law as, t¯1/4, and causes the premature termination of the groove penetration because of the current crowding at the tips of counteracting grain boundary-grooves initiated on both sides of the test modulus. That finding indicates that the electromigration plays the same role as a healing agent [T. O. Ogurtani, J. Appl. Phys. 106, 053503 (2009)] in arresting the thermal grooving, thereby avoiding the premature interconnect failure as in the case of surface roughening and crack initiation caused by compressive stress gradients. The role of the electromigration and wetting parameter on the ridge/slit formations are thoroughly investigated in this study and the prerequisite conditions are also identified.

1.
C.
Herring
,
The Physics of Powder Metallurgy
, edited by
W. E.
Kinston
(
McGraw-Hill
,
New York
,
1951
), p.
143
.
2.
J.
Von-Neumann
,
Metal Interfaces
(
ASM
,
Cleveland
,
1952
), p.
108
.
3.
W. W.
Mullins
,
J. Appl. Phys.
28
(
3
),
333
(
1957
).
4.
W.
Gibbs
,
The Collected Works of J. Willard Gibbs, Thermodynamics
Vol.
I
(
Yale University Press
,
New Haven
,
1948
), p.
226
.
5.
L. E.
Murr
,
Interfacial Phenomena in Metals and Alloys
(
Addison-Wesley
,
Reading, MA
,
1975
), p.
10
.
6.
T.
Young
,
Philos. Trans. R. Soc. London
,
95
,
65
(
1805
).
7.
L. M.
Klinger
,
X.
Chu
,
W. W.
Mullins
, and
C. L.
Bauer
,
J. Appl. Phys.
80
(
12
),
6670
(
1996
).
8.
M.
Nathan
,
E.
Glickman
,
M.
Khenner
,
A.
Averbuch
, and
M.
Israeli
,
Appl. Phys. Lett.
77
(
21
),
3355
(
2000
).
9.
M.
Khenner
,
A.
Averbuch
,
M.
Israeli
, and
M.
Nathan
,
J. Comput. Phys.
170
(
2
),
764
(
2001
).
10.
M.
Ohring
,
J. Appl. Phys.
42
(
7
),
2653
(
1971
).
11.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
(
Interscience
,
New York
,
1961
), p.
29
.
12.
T. O.
Ogurtani
and
E. E.
Oren
,
Int. J. Solids Struct.
42
,
3918
(
2005
).
13.
T. O.
Ogurtani
,
J. Chem. Phys.
124
,
144706
(
2006
).
14.
J. E.
Verschaffelt
,
Bull. Cl. Sci., Acad. R. Belg.
22
,
373
(
1936
).
15.
E. A.
Guggenheim
,
Thermodynamics
, 3rd ed. (
North-Holland
,
Amsterdam
,
1959
), p.
46
.
16.
E.
Arzt
,
O.
Kraft
,
W. D.
Nix
, and
J. E.
Sanchez
,
J. Appl. Phys.
76
(
3
),
1563
(
1994
).
17.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
96
(
12
),
7246
(
2004
).
18.
T. O.
Ogurtani
and
O.
Akyildiz
,
Int. J. Solids Struct.
45
,
921
(
2008
).
19.
C. L.
Liu
,
X.Y.
Liu
, and
L.
Borucki
,
Appl. Phys. Lett.
74
,
34
(
1999
).
20.
E. N.
Yeremin
,
The Foundations of Chemical Kinetics
(
Mir
,
Moscow
,
1979
), p.
215
.
21.
A.
Averbuch
,
M.
Israeli
,
M.
Nathan
, and
I.
Ravve
,
J. Comp. Phys.
188
(
2
),
640
(
2003
).
22.
M.
Nathan
,
A.
Averbuch
, and
M.
Israeli
,
Thin Solid Films
466
(
1–2
),
347
(
2004
).
23.
T. O.
Ogurtani
and
O.
Akyildiz
,
J. Appl. Phys.
97
(
9
),
093520
(
2005
).
24.
S. P.
Riege
,
A. W.
Hunt
, and
J. A.
Prybyla
,
Mater. Res. Soc. Symp. Proc.
391
,
249
(
1995
).
25.
S. P.
Riege
,
J. A.
Prybyla
, and
A. W.
Hunt
,
Appl. Phys. Lett.
69
(
16
),
2367
(
1996
).
26.
J. A.
Prybyla
,
S. P.
Riege
,
S. P
Grabowski
, and
A. W.
Hunt
,
Appl. Phys. Lett.
73
(
8
),
1083
(
1998
).
27.
28.
D.
Fridline
and
A. F.
Bower
,
J. Appl. Phys.
91
(
4
),
2380
(
2002
).
29.
T. O.
Ogurtani
and
A.
Celik
,
J. Appl. Phys.
100
,
043504
(
2006
).
You do not currently have access to this content.