The dislocation density and the average twin boundary frequency is determined quantitatively in as-deposited and cold-rolled nanotwinned Cu thin films by high-resolution X-ray line profile analysis. After cold-rolling the dislocation density increases considerably, whereas the twin boundary frequency decreases only slightly. The physical parameters of the substructure provided by the quantitative X-ray analysis are in agreement with earlier transmission electron microscopy observations. The flow stress of the as-deposited and the cold-rolled films is directly correlated with the average thickness of twin lamellae and the dislocation density by taking into account the Hall-Petch and Taylor type strengthening mechanisms.
REFERENCES
1.
L.
Lu
, Y.
Shen
, X.
Chen
, L.
Qian
, and K.
Lu
, Science
, 304
, 422
(2004
).2.
X.
Zhang
, H.
Wang
, X. H.
Chen
, L.
Lu
, K.
Lu
, R. G.
Hoagland
, and A.
Misra
, Appl. Phys. Lett.
88
, 173116
–1
(2006
).3.
X.
Zhang
, A.
Misra
, H.
Wang
, M.
Nastasi
, J. D.
Embury
, T. E.
Mitchell
, R. G.
Hoagland
, and J. P.
Hirth
, Appl. Phys. Lett.
84
, 1096
(2004
).4.
J. G.
Wang
, M. L.
Tian
, T. E.
Mallouk
, and M. H. W.
Chan
, J. Phys. Chem. B
108
, 841
(2004
).5.
M.
Dao
, L.
Lu
, Y. F.
Shen
, and S.
Suresh
, Acta Mater.
54
, 5421
(2006
).6.
O.
Anderoglu
, A.
Misra
, H.
Wang
, F.
Ronning
, M. F.
Hundley
, and X.
Zhang
, Appl. Phys. Lett.
93
, 083108
(2008
).7.
O.
Anderoglu
, A.
Misra
, H.
Wang
, and X.
Zhang
, J. Appl. Phys.
103
, 094322
(2008
).8.
C. J.
Shute
, B. D.
Myers
, S.
Xie
, T. W.
Barbee
, Jr. A. M.
Hodge
, and J. R.
Weertman
, Scr. Mater.
60
, 1073
(2009
).9.
O.
Anderoglu
, A.
Misra
, J.
Wang
, R. G.
Hoagland
, J. P.
Hirth
, and X.
Zhang
, Int. J. Plast.
26
, 875
(2010
).10.
J.
Wang
, N.
Li
, O.
Anderoglu
, X.
Zhang
, A.
Misra
, J. Y.
Huang
, and J. P.
Hirth
, Acta Mater.
58
, 2262
(2010
).11.
K.
Lu
, L.
Lu
, and S.
Suresh
, Science
, 324
, 349
(2009
).12.
L.
Balogh
, G.
Ribárik
, and T.
Ungár
, J. Appl. Phys.
100
, 023512
(2006
).13.
G.
Ribárik
, T.
Ungár
, and J.
Gubicza
, J. Appl. Crystallogr.
34
, 669
(2001
).14.
E. O.
Hall
, Proc. Phys. Soc., London, Sect.
B 64
, 747
(1951
).15.
16.
17.
M.
Wilkens
, Phys. Status Solidi A
2
, 359
(1970
)18.
T.
Ungár
and G.
Tichy
, Phys. Status Solidi A
171
, 425
(1999
).19.
T.
Ungár
, J.
Gubicza
, A.
Borbély
, and G.
Ribárik
, J. Appl. Crystallogr.
34
, 298
(2001
).20.
W. C.
Hinds
, Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles
(Wiley
, New York
, 1982
).21.
T.
Ungár
, G.
Tichy
, J.
Gubicza
, and R. J.
Hellmig
, Powder Diffr.
20
, 366
(2005
).22.
L.
Balogh
, G.
Tichy
, and T.
Ungár
, J. Appl. Crystallogr.
42
, 580
(2009
).23.
T.
Ungár
and A.
Borbély
, Appl. Phys. Lett.
69
, 173
(1996
).24.
Y. F.
Shen
, L.
Lu
, Q. H.
Lu
, Z. H.
Jin
, and K.
Lu
, Scr. Mater.
52
, 989
(2005
).25.
N.
Kamikawa
, X.
Huang
, N.
Tsuji
, and N.
Hansen
, Acta Mater.
57
, 4198
(2009
).26.
N. R.
Tao
and K.
Lu
, Scr. Mater.
60
, 1039
(2009
).27.
B.
Clausen
, T.
Lorentzen
, and T.
Leffers
, Acta Mater.
46
, 3087
(1998
).28.
G. I.
Taylor
, Proc. Roy. Soc. London, Ser. A
145
, 362
(1934
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.