The dislocation density and the average twin boundary frequency is determined quantitatively in as-deposited and cold-rolled nanotwinned Cu thin films by high-resolution X-ray line profile analysis. After cold-rolling the dislocation density increases considerably, whereas the twin boundary frequency decreases only slightly. The physical parameters of the substructure provided by the quantitative X-ray analysis are in agreement with earlier transmission electron microscopy observations. The flow stress of the as-deposited and the cold-rolled films is directly correlated with the average thickness of twin lamellae and the dislocation density by taking into account the Hall-Petch and Taylor type strengthening mechanisms.

1.
L.
Lu
,
Y.
Shen
,
X.
Chen
,
L.
Qian
, and
K.
Lu
,
Science
,
304
,
422
(
2004
).
2.
X.
Zhang
,
H.
Wang
,
X. H.
Chen
,
L.
Lu
,
K.
Lu
,
R. G.
Hoagland
, and
A.
Misra
,
Appl. Phys. Lett.
88
,
173116
1
(
2006
).
3.
X.
Zhang
,
A.
Misra
,
H.
Wang
,
M.
Nastasi
,
J. D.
Embury
,
T. E.
Mitchell
,
R. G.
Hoagland
, and
J. P.
Hirth
,
Appl. Phys. Lett.
84
,
1096
(
2004
).
4.
J. G.
Wang
,
M. L.
Tian
,
T. E.
Mallouk
, and
M. H. W.
Chan
,
J. Phys. Chem. B
108
,
841
(
2004
).
5.
M.
Dao
,
L.
Lu
,
Y. F.
Shen
, and
S.
Suresh
,
Acta Mater.
54
,
5421
(
2006
).
6.
O.
Anderoglu
,
A.
Misra
,
H.
Wang
,
F.
Ronning
,
M. F.
Hundley
, and
X.
Zhang
,
Appl. Phys. Lett.
93
,
083108
(
2008
).
7.
O.
Anderoglu
,
A.
Misra
,
H.
Wang
, and
X.
Zhang
,
J. Appl. Phys.
103
,
094322
(
2008
).
8.
C. J.
Shute
,
B. D.
Myers
,
S.
Xie
,
T. W.
Barbee
, Jr.
A. M.
Hodge
, and
J. R.
Weertman
,
Scr. Mater.
60
,
1073
(
2009
).
9.
O.
Anderoglu
,
A.
Misra
,
J.
Wang
,
R. G.
Hoagland
,
J. P.
Hirth
, and
X.
Zhang
,
Int. J. Plast.
26
,
875
(
2010
).
10.
J.
Wang
,
N.
Li
,
O.
Anderoglu
,
X.
Zhang
,
A.
Misra
,
J. Y.
Huang
, and
J. P.
Hirth
,
Acta Mater.
58
,
2262
(
2010
).
11.
K.
Lu
,
L.
Lu
, and
S.
Suresh
,
Science
,
324
,
349
(
2009
).
12.
L.
Balogh
,
G.
Ribárik
, and
T.
Ungár
,
J. Appl. Phys.
100
,
023512
(
2006
).
13.
G.
Ribárik
,
T.
Ungár
, and
J.
Gubicza
,
J. Appl. Crystallogr.
34
,
669
(
2001
).
14.
E. O.
Hall
,
Proc. Phys. Soc., London, Sect.
B 64
,
747
(
1951
).
15.
N. J.
Petch
,
J.
Iron Steel Inst.
,
London
173
,
25
(
1953
).
16.
G. I.
Taylor
,
J. Inst. Metals
62
,
307
(
1928
).
17.
M.
Wilkens
,
Phys. Status Solidi A
2
,
359
(
1970
)
18.
T.
Ungár
and
G.
Tichy
,
Phys. Status Solidi A
171
,
425
(
1999
).
19.
T.
Ungár
,
J.
Gubicza
,
A.
Borbély
, and
G.
Ribárik
,
J. Appl. Crystallogr.
34
,
298
(
2001
).
20.
W. C.
Hinds
,
Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles
(
Wiley
,
New York
,
1982
).
21.
T.
Ungár
,
G.
Tichy
,
J.
Gubicza
, and
R. J.
Hellmig
,
Powder Diffr.
20
,
366
(
2005
).
22.
L.
Balogh
,
G.
Tichy
, and
T.
Ungár
,
J. Appl. Crystallogr.
42
,
580
(
2009
).
23.
T.
Ungár
and
A.
Borbély
,
Appl. Phys. Lett.
69
,
173
(
1996
).
24.
Y. F.
Shen
,
L.
Lu
,
Q. H.
Lu
,
Z. H.
Jin
, and
K.
Lu
,
Scr. Mater.
52
,
989
(
2005
).
25.
N.
Kamikawa
,
X.
Huang
,
N.
Tsuji
, and
N.
Hansen
,
Acta Mater.
57
,
4198
(
2009
).
26.
N. R.
Tao
and
K.
Lu
,
Scr. Mater.
60
,
1039
(
2009
).
27.
B.
Clausen
,
T.
Lorentzen
, and
T.
Leffers
,
Acta Mater.
46
,
3087
(
1998
).
28.
G. I.
Taylor
,
Proc. Roy. Soc. London, Ser. A
145
,
362
(
1934
).
You do not currently have access to this content.