The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV–vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH∼7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

1.
W.
Shang
,
J. H.
Nuffer
,
V. A.
Muniz-Papandrea
,
W.
Colon
,
R. W.
Siegel
, and
J. S.
Dordick
,
Small
5
,
470
(
2009
).
2.
J.
Zhou
,
N. S.
Xu
, and
Z. L.
Wang
,
Adv. Mater.
18
,
2432
(
2006
).
3.
A.
Umar
,
M. M.
Rahman
,
M.
Vaseem
, and
Y.-B.
Hahn
,
Electrochem. Commun.
11
,
118
(
2009
).
4.
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
);
[PubMed]
X. D.
Wang
,
J. H.
Song
,
J.
Liu
, and
Z. L.
Wang
,
Science
316
,
102
(
2007
).
[PubMed]
5.
R.
Khan
,
A.
Kaushik
,
P. R.
Solanki
,
A. A.
Ansari
,
M. K.
Pandey
, and
B. D.
Malhotra
,
Anal. Chim. Acta
616
,
207
(
2008
).
7.
L.
Stryer
, in
Biochemistry
, 4th ed. (
W.H. Freeman and Co.
,
New York
,
1995
), pp.
147
178
.
8.
D.-M.
Sun
,
C.-X.
Cai
,
X.-G.
Li
,
W.
Xing
, and
T.-H.
Lu
,
J. Electroanal. Chem.
566
,
415
(
2004
).
9.
B.
Tang
,
Y.
Wang
,
H.
Liang
,
Z.
Chen
,
X.
He
, and
H.
Shen
,
Spectrochim. Acta Part A
63
,
609
(
2006
).
Z.
Chen
,
J. S.
de Ropp
,
G.
Hernandez
, and
G. N.
La Mar
,
J. Am. Chem. Soc.
116
,
8772
(
1994
).
11.
D.
Job
and
H. B.
Dunford
,
Eur. J. Biochem.
66
,
607
(
1976
);
[PubMed]
W.
Sun
,
X.
Ji
,
L. J.
Kricka
, and
H. B.
Dunford
,
Can. J. Chem.
72
,
2159
(
1994
);
P. P.
Kelder
,
N. J.
de Mol
,
M. J. E.
Fischer
, and
L. H. M.
Janssen
,
Biochim. Biophys. Acta
1205
,
230
(
1994
);
[PubMed]
L P.
Candeias
,
L K.
Folkes
,
M.
Porssa
,
J.
Parrick
, and
P.
Wardman
,
Biochemistry
35
,
102
(
1996
).
[PubMed]
13.
Y.
Lee
and
K. B.
Song
,
J. Biochem. Mol. Biol.
35
,
590
(
2002
).
14.
A. B.
Anderson
and
C. R.
Robertson
,
Biophys. J.
68
,
2091
(
1995
).
15.
I.
Lozzi
,
L.
Calamai
,
P.
Fusi
,
M.
Bosetto
, and
G.
Stotzky
,
Soil Biol. Biochem.
33
,
1021
(
2001
).
16.
A.
Sulkowska
J. Mol. Struct.
614
,
227
(
2002
).
17.
A. G.
Szabo
,
D.
Kpajcarski
,
M.
Zuker
, and
B.
Alpert
,
Chem. Phys. Lett.
108
,
145
(
1984
).
18.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 2nd ed. (
Kluwer Academic/Plenum Publishers
,
New York
,
1999
), Chap. 9, p.
267
.
19.
Z.
Gryczynski
,
J.
Lubkowski
, and
E.
Bucci
,
J. Biol. Chem.
270
,
19232
(
1995
).
20.
D. R.
James
,
Y.-S.
Liu
,
P.
De Mayo
, and
W. R.
Ware
,
Chem. Phys. Lett.
120
,
460
(
1985
).
21.
N.
Zhou
,
Y. Z.
Liang
, and
P.
Wang
,
J. Photochem. Photobiol. A
185
,
271
(
2007
).
22.
X.-Z.
Feng
,
Z.
Lin
,
L.-J.
Yang
,
C.
Wang
, and
C.-L.
Bai
,
Talanta
47
,
1223
(
1998
).
23.
F.
Wang
,
J.
Yang
,
X.
Wu
,
X.
Wang
,
L.
Feng
,
Z.
Jia
, and
C.
Guo
,
J. Colloid Interf. Sci.
298
,
757
(
2006
).
24.
S.
Bi
,
L.
Ding
,
Y.
Tian
,
D.
Song
,
X.
Zhou
,
X.
Liu
, and
H.
Zhang
,
J. Mol. Struct.
703
,
37
(
2004
).
25.
G.
Mandal
,
S.
Bhattacharya
, and
T.
Ganguly
,
Chem. Phys. Lett.
472
,
128
(
2009
).
26.
J. B.
Xiao
,
X. Q.
Chen
,
X. Y.
Jiang
,
M.
Hilczer
, and
M.
Tachiya
,
J. Fluoresc.
18
,
671
(
2008
).
27.
Q.
Xu
,
B.
Han
, and
H.
Yan
,
J. Phys. Chem. A
103
,
5240
(
1999
).
28.
M.
De
,
C.-C.
You
,
S.
Srivastava
, and
V. M.
Rotello
,
J. Am. Chem. Soc.
129
,
10747
(
2007
).
29.
J. B.
Xiao
,
J.
Shi
,
H.
Cao
,
S. D.
Wu
,
F. L.
Ren
, and
M.
Xu
,
J. Pharm. Biomed. Anal.
45
,
609
(
2007
).
30.
J. K.
Koening
and
D. L.
Tabb
, in
Analytical Applications of FT-IR to Molecular and Biological Systems
, edited by
J. R.
During
(
Reidel
,
Boston, MA
,
1980
), p.
241
.
31.
J. K.
Kauppinen
,
D. J.
Moffat
,
H. H.
Mantsch
, and
D. G.
Cameron
,
Appl. Spectrosc.
35
,
271
(
1981
).
32.
J. F.
Rusling
and
T. F.
Kumosinski
,
Intell. Instrum. Comput.
10
,
139
(
1992
).
33.
Z. H.
Chi
and
S. A.
Asher
,
Biochemistry
37
,
2865
(
1998
).
34.
H.
Al-Ekabl
and
N.
Serpone
,
J. Phys. Chem.
92
,
5726
(
1988
).
35.
T. K.
Das
and
S.
Mazumdar
,
Eur. J. Biochem.
227
,
823
(
1995
).
36.
Y. J.
Hu
,
Y.
Liu
,
Z. B.
Pi
, and
S. S.
Qu
,
Bioorg. Med. Chem.
13
,
6609
(
2005
).
37.
T.
Yuan
,
A. M.
Weljie
, and
H. J.
Vogel
,
Biochemistry
37
,
3187
(
1998
).
38.
R. W.
Congdon
,
G. W.
Muth
, and
A. G.
Splittgerber
,
Anal. Biochem.
213
,
407
(
1993
).
39.
J. H.
Hafner
,
C -L.
Cheung
,
A. T.
Woolley
, and
C. M.
Lieber
,
Prog. Biophys. Mol. Biol.
77
,
73
(
2001
).
40.
C.
McAllister
,
M. A.
Karymov
,
Y.
Kawano
,
A. Y.
Lushnikov
,
A.
Mikheikin
,
V. N.
Uversky
, and
Y. L.
Lyubchenko
,
J. Mol. Biol.
354
,
1028
(
2005
).
41.
K. V.
Singh
,
R. R.
Pandey
,
X.
Wang
,
R.
Lake
,
C. S.
Ozkan
,
K.
Wang
, and
M.
Ozkan
,
Carbon
44
,
1730
(
2006
).
42.
M.
Sano
,
A.
Kamino
, and
S.
Shinkai
,
Angew. Chem. Int. Ed.
40
,
4661
(
2001
).
43.
O. I.
Kiselyova
,
O. L.
Guryev
,
A. V.
Krivosheev
,
S. A.
Usanov
, and
I. V.
Yaminsky
,
Langmuir
15
,
1353
(
1999
).
44.
M.
Radmacher
,
R. W.
Tillamnn
,
M.
Fritz
, and
H. E.
Gaub
,
Science
257
,
1900
(
1992
).
45.
S.
Boussaad
and
N. J.
Tao
,
J. Am. Chem. Soc.
121
,
4510
(
1999
).
46.
R.
Li
,
Y.
Nagai
, and
M.
Nagai
,
J. Inorg. Biochem.
82
,
93
(
2000
).
47.
L.
Shang
,
Y.
Wang
,
J.
Jiang
, and
S.
Dong
,
Langmuir
23
,
2714
(
2007
).
48.
Z. X.
Lu
,
T.
Cui
, and
Q. L.
Shi
,
Applications of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology
, 1st ed. (Science Press,
1987
), pp.
79
82
.
49.
D.
Sears
and
S.
Wand Beychock
, in
Physical Principles and Techniques of Protein Chemistry
, edited by
S. J.
Leach
(
Academic Press
,
New York/London
,
1973
), Part C, pp.
445
593
.
50.
J.
Tang
,
J.
Jiang
,
Y.
Song
,
Z.
Peng
,
Z.
Wu
,
S.
Dong
, and
E.
Wang
,
Chem. Phys. Lipids
120
,
119
(
2002
).
51.
Y. P.
Myer
,
J. Biol. Chem.
243
,
2115
(
1968
).
52.
C. T.
Chang
,
C.-S. C.
Wu
, and
J. T.
Yang
,
Anal. Biochem.
91
,
13
(
1978
).
53.
Y.-H.
Chen
,
J. T.
Yang
, and
H. M.
Martinez
,
Biochemistry
22
,
4120
(
1972
).
54.
S. W.
Provencher
and
J.
Glockner
,
Biochemistry
20
,
33
(
1981
).
55.
See supplementary material at http://dx.doi.org/10.1063/1.3610446 for tables and figures of some results.

Supplementary Material

You do not currently have access to this content.