The near-field electron beam induced current technique is used to study the minority carrier effective diffusion length versus electron beam energy on structures containing spherical Ge nanocrystals (NCs) with diameters of 50 nm and 70 nm formed by a two step dewetting/nucleation process. For both nanocrystal sizes, the effective diffusion length increases with the electron beam energy and then decreases from a threshold energy, which depends on the nanocrystal size. The effective diffusion length is smaller at low energy for NCs of larger size because of their larger surface recombination velocity, due to a better charge trapping efficiency.

1.
F.
Koch
,
W.
Hergert
,
G.
Oelgart
, and
N.
Puhlmann
,
Phys. Status Solidi A
109
,
261
(
1988
).
2.
N.
Puhlmann
and
G.
Oelgart
,
Phys. Status Solidi A
122
,
705
(
1990
).
3.
V. K. S.
Ong
and
D.
Wu
,
Rev. Sci. Instrum.
70
,
2793
(
1999
).
4.
H.
Lu
,
D.
Cao
,
X.
Xiu
,
Z.
Xie
,
R.
Zhang
,
Y.
Zheng
, and
Z.
Li
,
Solid-State Electron.
52
,
817
(
2008
).
5.
D.
Cavalcoli
,
A.
Cavallini
, and
A.
Casaldini
,
J. Appl. Phys.
70
,
2163
(
1991
).
6.
S. Q.
Zhu
,
E. I.
Rau
, and
F. H.
Yang
,
Semicond. Sci. Technol.
18
,
361
(
2003
).
7.
R.
Heiderhoff
,
R. M.
Cramer
, and
L. J.
Balk
,
IEEE Int. Reliab. Phys. Symp. Proc.
366
,
96CH35825
(
1996
).
8.
M.
Troyon
,
H. N.
Lei
,
Z.
Wang
, and
G.
Shang
,
Microsc. Microanal. Microstruct.
8
,
393
(
1997
).
9.
M.
Troyon
and
K.
Smaali
,
Appl. Phys. Lett.
90
,
212110
(
2007
).
10.
K.
Gacem
,
A.
El Hdiy
,
M.
Troyon
,
I.
Berbezier
, and
A.
Ronda
,
Nanotechnology
21
,
065706
(
2010
).
11.
P. D.
Szkutnik
,
A.
Karmous
,
F.
Bassani
,
A.
Ronda
,
I.
Berbezier
,
K.
Gacem
,
A.
El Hdiy
, and
M.
Troyon
,
Eur. Phys. J.: Appl. Phys.
41
,
103
(
2008
).
12.
M.
Troyon
and
K.
Smaali
,
Nanotechnology
19
,
255709
(
2008
).
13.
K.
Smaali
,
J.
Fauré
,
A.
El Hdiy
, and
M.
Troyon
,
Ultramicroscopy
108
,
605
(
2008
).
14.
K.
Smaali
,
A.
El Hdiy
,
M.
Molinari
, and
M.
Troyon
,
IEEE Trans. Electron. Devices
57
,
1455
(
2010
).
15.
M. W.
Geis
,
J. A.
Gregory
, and
B. B.
Pate
,
IEEE Trans. Electron. Devices
38
,
619
(
1991
).
16.
H.
Mathieu
,
Physique des Semiconducteurs et des Composants Électroniques
, 5th ed. (
DUNOD
,
France
,
2004
).
17.
Y. M.
Niquet
,
G.
Allan
,
C.
Delerue
, and
M.
Lannoo
,
Appl. Phys. Lett.
77
,
1182
(
2000
).
18.
E. B.
Yakimov
,
S. S.
Borisov
, and
S. I.
Zaitsev
,
Semiconductors
41
,
411
(
2007
).
19.
J. L.
Maurice
,
J. Phys. III
3
,
603
(
1993
).
20.
C. J.
Wu
and
D. B.
Wittry
,
J. Appl. Phys.
49
,
2827
(
1978
).
21.
H. J.
Leamy
,
J. Appl. Phys.
53
,
R51
(
1982
).
22.
E.
Grünbaum
,
E.
Napchan
,
Z.
Barkay
,
K.
Barnham
,
J.
Nelson
,
C. T.
Foxon
,
J. S.
Roberts
, and
D. B.
Holt
,
Semicond. Sci. Technol.
10
,
627
(
1995
).
23.
D.
Ballutaud
,
A.
Rivière
,
M.
Rusu
,
S.
Bourdais
, and
A.
Slaoui
,
Thin Solid Films
,
403–404
,
549
(
2002
).
24.
E. B.
Yakimov
,
P. S.
Vergeles
,
A. Y.
Polyakov
,
N. B.
Smirnov
,
A. V.
Govorkov
,
I-H.
Lee
,
C. R.
Lee
, and
S. J.
Pearton
,
Appl. Phys. Lett.
92
,
042118
(
2008
).
25.
L.
Jastrzebski
,
J.
Lagowski
, and
H. C.
Gatos
,
Appl. Phys. Lett.
27
,
537
(
1975
).
26.
T.
Miyajima
,
M.
Ozawa
,
T.
Asatsuma
,
H.
Kawai
, and
M.
Ikeda
,
J. Cryst. Growth
189/190
,
768
(
1998
).
27.
L.
Chernyak
,
A.
Osinsky
,
H.
Temkin
,
J. W.
Yang
,
Q.
Chen
, and
M.
Asif Khan
,
Appl. Phys. Lett.
69
,
2531
(
1996
).
28.
L.
Chernyak
,
A.
Osinsky
, and
A.
Schulte
,
Solid-State Electron.
45
,
1687
(
2001
).
29.
S.
Guermazi
,
H.
Guermazi
,
Y.
Mlik
,
B.
El Jani
,
C.
Grill
, and
A.
Toureille
,
Eur. Phys. J.: Appl. Phys.
16
,
45
(
2001
).
30.
N.-M.
Park
,
S.-H.
Jeon
,
H.-D.
Yang
,
H.
Hwang
,
S.-J.
Park
, and
S.-H.
Choi
,
Appl. Phys. Lett.
83
,
1014
(
2003
).
31.
A.
El Hdiy
,
K.
Gacem
,
M.
Troyon
,
A.
Ronda
,
F.
Bassani
, and
I.
Berbezier
,
J. Appl. Phys.
104
,
063716
(
2008
).
You do not currently have access to this content.