Growth of Si, Ge, and, thus, SiGe nanowires (NWs) by catalyzed chemical vapor deposition proceeds at different process conditions, preventing easy realization of axial multijunctions interesting for device realization. In this paper, we propose a common process to obtain both Si, Ge, and alloyed NWs simply by adding HCl in the gas phase. It is demonstrated that addition of HCl during the growth improves the structural quality of the SiGe NWs, avoids the tapering of NWs by decreasing the uncatalyzed growth, increases the Ge fraction of the SiGe alloy NWs, and decreases the growth rate. A qualitative model based on the experimental results is proposed to explain the role of HCl during the growth. This model can be more generally applied to explain the tendency observed in the literature concerning the growth of SiGe alloyed NWs without HCl. It is based on a competition between adsorption, decomposition, and incorporation of Si and Ge in the catalyst. This competition is mainly regulated by the gas phase composition and by the reaction between the reactive species and the catalyst surface.

1.
K.
Rim
,
R.
Anderson
,
D.
Boyd
,
F.
Cardone
,
K.
Chan
,
H.
Chen
,
S.
Christansen
,
J.
Chu
,
K.
Jenkins
, and
T.
Kanarsky
,
Solid-State Electron.
47
,
1133
(
2003
).
2.
F.
Schäffler
,
Semicond. Sci. Technol.
12
,
1515
(
1997
)
3.
I.
Berbezier
and
A.
Ronda
,
Surf. Sci. Rep.
64
,
47
(
2009
).
4.
S.
Bozzo
,
S.
Bozzo
,
J.-L.
Lazzari
,
C.
Coudreau
,
A.
Ronda
,
F.
Arnaud d’Avitaya
,
J.
Derrien
,
S.
Mesters
,
B.
Hollaender
,
P.
Gergaud
, and
O.
Thomas
,
J. Cryst. Growth
216
,
171
(
2000
)
5.
M.
Myronov
,
K.
Sawano
, and
Y.
Shiraki
,
Appl. Phys. Lett.
88
,
252115
(
2006
).
6.
D. J.
Meyer
,
D. A.
Webb
,
M. G.
Ward
,
J. D.
Sellar
,
P. Y.
Zeng
, and
J.
Robinson
,
Mater. Sci. Semicond. Process.
4
,
529
(
2001
).
7.
D. J.
Paul
,
P.
See
,
I. V.
Zozoulenko
,
K.-F.
Berggren
,
B.
Kabius
,
B.
Holländer
, and
S.
Mantl
,
Appl. Phys. Lett.
77
,
1653
(
2000
).
8.
S. T.
Huxtable
,
A. R.
Abramson
,
C.-L.
Tien
,
A.
Majumdar
,
C.
LaBounty
,
X.
Fan
,
G.
Zeng
,
J. E.
Bowers
,
A.
Shakouri
, and
E. T.
Croke
,
Appl. Phys. Lett.
80
,
1737
(
2002
).
9.
M.
Bauer
,
C.
Schollhorn
,
K.
Lyutovich
,
E.
Kasper
,
M.
Jutzi
, and
M.
Berroth
,
Mater. Sci. Eng., B
89
,
77
(
2002
).
10.
D. J.
Paul
,
Thin Solid Films
321
,
172
(
1998
).
11.
K.
Washio
,
Solid-State Electron.
43
,
1619
(
1999
).
12.
F.
Mazen
,
T.
Baron
,
A. M.
Papon
,
R.
Truche
, and
J. M.
Hartmann
,
Appl. Surf. Sci.
214
,
359
(
2003
).
13.
H.
Yan
,
H.
Sung Choe
,
S. W.
Nam
,
Y.
Hu
,
S.
Das
,
J. F.
Klemic
,
J. C.
Ellenbogen
, and
C. M.
Lieber
,
Nature
470
,
240
(
2011
).
14.
K. K.
Lew
,
L.
Pan
,
E. C.
Dickey
, and
J. M.
Redwing
,
Adv. Mater.
15
,
2073
(
2003
).
15.
C. J.
Kim
,
J. E.
Yang
,
H. S.
Lee
,
H. M.
Jang
, and
M. H.
Jo
,
Appl. Phys. Lett.
91
,
033104
(
2007
).
16.
T.
Kawashima
,
G.
Imamura
,
M.
Fujii
,
S.
Hayashi
,
T.
Saitoh
, and
K.
Komori
,
J. Appl. Phys.
102
,
124307
(
2007
).
17.
S. J.
Whang
,
S. J.
Lee
,
W. F.
Yang
,
B. J.
Cho
, and
D. L.
Kwong
,
Appl. Phys. Lett.
91
,
072105
(
2007
).
18.
U.
Givan
and
F.
Patolosky
,
Nano Lett.
9
,
1775
(
2009
).
19.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
20.
C.-Y.
Wen
,
M. C.
Reuter
,
J.
Bruley
,
J.
Tersoff
,
S.
Kodambaka
,
E. A.
Stach
, and
F. M.
Ross
,
Science
326
,
1247
(
2009
).
21.
Y.-J.
Hyun
,
A.
Lugstein
,
M.
Steinmair
,
E.
Bertagnolli
, and
P.
Pongratz
,
Nanotechnology
20
,
125606
(
2009
).
22.
S.
Takeda
,
H.
Fujii
,
Y.
Kawakita
,
S.
Tahara
,
S.
Nakashima
,
S.
Kohara
, and
M.
Itou
,
J. Alloys Compd.
422
,
149
(
2008
).
23.
E.
Kasper
,
A.
Schuh
,
G.
Bauer
,
B.
Holländer
, and
H.
Kibbel
,
J. Cryst. Growth
157
,
68
(
1995
).
24.
J. C.
Tsang
,
P. M.
Mooney
,
F.
Dacol
, and
J. O.
Chu
,
J. Appl. Phys.
75
,
8098
(
2008
).
25.
A.
Potié
,
T.
Baron
,
F.
Dhalluin
,
G.
Rosaz
,
B.
Salem
,
L.
Latu-Romain
,
M.
Kogelschatz
,
P.
Gentile
,
F.
Oehler
,
L.
Montès
,
J.
Kreisel
, and
H.
Roussel
,
Nanoscale Res. Lett.
6
,
187
(
2011
).
26.
K. K
Lew
,
L.
Pan
,
E. C.
Dickey
, and
J. M.
Redwing
,
J. Mater. Res.
21
,
2876
(
2006
).
27.
P.
Gentile
,
T.
David
,
F.
Dhalluin
,
D.
Buttard
,
N.
Pauc
,
M.
Den Hertog
,
P.
Ferret
, and
T.
Baron
,
Nanotechnology
19
,
125608
(
2008
).
28.
T. I.
Kamins
,
D. W.
Vook
,
P. K.
Yu
, and
J. E.
Turner
,
Appl. Phys. Lett.
61
,
669
(
1992
).
29.
S.
Bodnar
,
E.
de Berranger
,
P.
Bouillon
,
M.
Mouis
,
T.
Skotnicki
, and
J. L.
Regolini
,
J. Vac. Sci. Technol. B
15
,
712
(
1997
).
30.
J. M.
Hartmann
,
F.
Champay
,
V.
Loup
,
G.
Rolland
, and
M. N.
Séméria
,
J. Cryst. Growth
241
,
93
(
2002
).
31.
T. I.
Kamins
,
G. A. D.
Briggs
, and
R.
Stanley Williams
,
Appl. Phys. Lett.
73
,
1862
(
1998
).
32.
T. I.
Kamins
,
J. Appl. Phys.
74
,
5799
(
1993
)
33.
Y.
Bogumilowicz
,
J. M.
Hartmann
,
R.
Truche
,
Y.
Campidelli
,
G.
Rolland
, and
T.
Billon
,
Semicond. Sci. Technol.
20
,
127
(
2005
).
34.
S.
Sharma
,
T. I.
Kamins
,
R.
Stanley Williams
,
Appl. Phys. A: Mater. Sci. Process.
80
,
1225
(
2005
).
35.
F.
Oehler
,
P.
Gentile
,
T.
Baron
, and
P.
Ferret
,
Nanotechnology
20
,
475307
(
2009
).
36.
F.
Oehler
, Ph.D. Thesis,
Grenoble University
,
2010
.
37.
W. W.
Fang
,
N.
Singh
,
L. K.
Bera
,
H. S.
Nguyen
,
S. C.
Rustagi
,
G. Q.
Lo
,
N.
Balasubramanian
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
28
,
211
(
2007
).
38.
D.
Jang
,
J. W.
Lee
,
K.
Tachi
,
L.
Montès
,
T.
Ernst
,
G. T.
Kim
, and
G.
Ghibaudo
,
Appl. Phys. Lett.
97
,
073505
(
2010
).
39.
N.
Singh
,
K. D.
Buddharaju
,
S. K.
Manhas
,
A.
Agarwal
,
S. C.
Rustagi
,
G. Q.
Lo
,
N.
Balasubramanian
, and
D. L.
Kwong
,
IEEE Trans. Electron Devices
55
,
3107
(
2008
).
40.
K.
Sinniah
,
M. G.
Sherman
,
L. B.
Lewis
,
W. H.
Weinberg
,
J. T.
Yates
, and
K. C.
Janda
,
Phys. Rev. Lett.
62
,
567
(
1989
).
41.
Y.
Ohshita
and
N.
Hosoi
,
J. Cryst. Growth
131
,
495
(
1993
).
42.
CRC Handbook of Chemistry and Physics
, 89th ed. 2008–2009 (
National Institute of Standards & Technology
,
Gaithersburg, Maryland
,).
43.
S.
Gu
,
Y.
Zheng
,
R.
Zhang
,
R.
Wang
, and
P.
Zhong
,
J. Appl. Phys.
75
,
5382
(
1994
).
You do not currently have access to this content.