A detailed spectroscopic analysis of the crystal-field splitting of the energy levels of Eu3+(4f6) in single crystals of hexagonal phase aluminum nitride is reported based on assignments made to the high-resolution cathodoluminescence spectra observed between 500 nm and 750 nm obtained at 11 K and room temperature. Single crystals doped with trivalent europium were grown by high pressure, high temperature technology, and the crystal structure was confirmed by x ray diffraction methods to be the hexagonal phase. The Eu3+ ions substitute for Al3+ ions in sites of C3v symmetry during crystal growth. More than 97% of the observed spectra are attributed to Eu3+ in the majority site. The spectra are identified as transitions from the excited 5D0 and 5D1multiplets of Eu3+ to the ground-state multiplets 7F0, 7F1, 7F2, 7F3,7F4, 7F5, and 7F6 split by the crystal field into energy (Stark) levels. A parameterized Hamiltonian defined to operate within the 4f6 electronic configuration of Eu3+ was used to model the experimental Stark levels and their symmetry assignments or irreducible representations (irreps). The crystal-field parameters were determined through use of a Monte Carlo method in which the six Bqk were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting, which involved 20 Stark levels and their irreps from 5D1, 5D0, and 7F0–4, resulted in a rms deviation of 6.7 cm−1. The predicted splitting of the 7F5 and 7F6 multiplets was used to assign the experimental splitting for these manifolds since the spectra involved are weak and broad, precluding detailed Stark-level assignments.

1.
M.
Levinstein
,
S.
Rumyantsev
, and
M.
Shur
,
Properties of Advanced Semi-Conductor Materials
(
Wiley
,
New York
,
2001
).
2.
H. J.
Lozykowski
,
W. M.
Jadwisienczak
, and
I.
Brown
,
Appl. Phys. Lett.
74
,
1129
(
1999
).
3.
A. J.
Steckl
and
J. M.
Zavada
,
MRS Bull.
24
,
33
(
1999
).
4.
U.
Vetter
,
J.
Zenneck
, and
H.
Hofsäss
,
Appl. Phys. Lett.
83
,
2145
(
2003
).
5.
H.
Peng
,
C. W.
Lee
,
H. O.
Everitt
,
C.
Munasinghe
,
D. S.
Lee
, and
A. J.
Steckl
,
J. Appl. Phys.
102
,
073520
(
2007
).
6.
E. D.
Readinger
,
G. D.
Metcalfe
,
H.
Shen
, and
M.
Wraback
,
Appl. Phys. Lett.
92
,
061108
(
2008
).
7.
B. R.
Judd
,
Operator Techniques in Atomic Spectroscopy
(
McGraw-Hill
,
New York
,
1963
).
8.
B. G.
Wybourne
,
Spectroscopic Properties of Rare-Earths
(
Wiley
,
New York
,
1965
).
9.
G.
Blasse
and
B. C.
Granmaier
,
Luminescent Materials
(
Springer-Verlag
,
Berlin
,
1994
).
10.
G. W.
Burdick
and
M. F.
Reid
,
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K. A.
Gschneidner
, Jr.
and
L.
Eyring
(
Elsevier
,
Amsterdam
,
2007
) Vol.
37
, pp.
61
98
.
11.
C.A.
Morrison
and
R. P.
Leavitt
,
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K.A.
Gschneidner
, Jr.
and
L.
Eyring
(
North-Holland
,
Amsterdam
,
1982
),
p
461
.
12.
C.
Görller-Walrand
and
K.
Binnemans
,
Handbook on the Physics and Chemistry of Rare Earths
, edited by
K.A.
Gschneidner
, Jr.
and
L.
Eyring
(
Elsevier
,
Amsterdam
,
1996
) Vol.
23
, pp.
121
283
.
13.
J. B.
Gruber
,
B.
Zandi
,
H. J.
Lozykowski
,
W. M.
Jadwisienczak
, and
I.
Brown
,
J. Appl. Phys.
89
,
7973
(
2001
).
14.
J. B.
Gruber
,
B.
Zandi
,
H. J.
Lozykowski
, and
W. M.
Jadwisienczak
,
J. Appl. Phys.
91
,
2929
(
2002
).
15.
J. B.
Gruber
,
U.
Vetter
,
H.
Hofsäss
,
B.
Zandi
, and
M. F.
Reid
,
Phys. Rev. B
69
,
195202
(
2004
).
16.
J. B.
Gruber
,
U.
Vetter
,
H.
Hofsäss
,
B.
Zandi
, and
M. F.
Reid
,
Phys. Rev. B
70
,
245108
(
2004
).
17.
T.
Koubaa
,
M.
Dammak
,
M.
Kammoun
,
W. M.
Jadwisienczak
,
H. J.
Lozykowski
, and
A.
Anders
,
J. Appl. Phys.
106
,
013106
(
2009
).
18.
J. H.
Park
and
A. J.
Steckl
,
J. Appl. Phys.
98
,
056108
(
2005
).
19.
T.
Taniguchi
and
K.
Watanabe
,
J. Cryst. Growth
303
,
525
(
2007
).
20.
U.
Vetter
,
H.
Hofsäss
, and
T.
Taniguchi
,
Appl. Phys. Lett.
84
,
4266
(
2004
).
21.
T.
Taniguchi
,
K.
Watanabe
, and
A.
Nakayama
, Synthesis of Eu-doped AlN Crystals by using Li-base Solvent Under High Pressure (unpublished).
22.
J.
Li
,
Z. Y.
Fan
,
R.
Dahal
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
89
,
213510
(
2006
).
23.
R.
Wyckoff
,
Crystal Structures
(
Interscience
,
New York
,
1965
), Vol.
3
.
24.
N.
Henry
and
K.
Lonsdale
,
International Tables for X-ray Crystallography
(
Kynoch
,
Birmingham
,
1952
), Vol.
1
.
25.
U.
Vetter
,
J. B.
Gruber
,
A. S.
Nijjar
,
B.
Zandi
,
G.
Ohl
,
U.
Wahl
,
B.
De Vries
,
H.
Hofsäss
,
M.
Dietrich
,
Phys. Rev. B
74
,
1
(
2006
).
26.
M.
Uhrmacher
,
K.
Pampus
,
F. J.
Bergmeister
,
D.
Purschke
, and
K. P.
Lieb
,
Nucl. Instrum. Methods Phys. Res. B
9
,
234
(
1985
).
27.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1999
).
28.
R. A.
Satten
,
Selection Rules for Paramagnetic Ions in Various Symmetry Fields: Electric Dipole, Magnetic Dipole, and Electric Quadruple Transitions
(
Hughes Research Laboratories
,
Malibu, CA
,
1961
).
29.
W. T.
Carnall
,
P.
Fields
, and
K.
Rajnak
,
J. Chem. Phys.
49
,
4412
(
1968
).
30.
W. T.
Carnall
,
G. L.
Goodman
,
K. L.
Rajnak
, and
R. S.
Rana
,
J. Chem. Phys.
90
,
3443
(
1989
).
31.
G. F.
Koster
,
J. O.
Dimmock
,
R.G.
Wheeler
, and
H.
Statz
,
Properties of the Thirty-Two Point Groups
(
MIT
,
Cambridge, MA
,
1963
).
You do not currently have access to this content.