In this paper we present molecular dynamics simulations of silicon nitride, both in bulk and as an interface to crystalline silicon. We investigate, in particular, the bonding structure of the silicon nitride and analyze the simulations to search for defective geometries which have been identified as potential charge carrier traps when silicon nitride forms an interface with silicon semiconductors. The simulations reveal how the bonding patterns in silicon nitride are dependent upon the stoichiometry of the system. Furthermore we demonstrate how having an “interphase”, where the nitrogen content in silicon gradually reduces toward pure silicon across a boundary region, as opposed to an interface where there is an abrupt drop in nitrogen concentration at the boundary, can result in significantly different numbers of certain important carrier trap.

1.
R.
Hezel
and
R.
Schroner
,
J. Appl. Phys.
52
,
3076
(
1981
).
2.
R.
Hezel
and
K.
Jaeger
,
J. Electrochem. Soc.
136
,
518
(
1989
).
3.
H.
Ahn
,
C.-L.
Wu
,
S.
Gwo
,
C. M.
Wei
, and
Y. C.
Chou
,
Phys. Rev. Lett.
86
,
2818
(
2001
).
4.
G. L.
Zhao
and
M. E.
Bachlechner
,
Phys. Rev. B
58
,
1887
(
1998
).
5.
M. L.
Colaianni
,
P. J.
Chen
,
N.
Nagashima
, and
J. J. T.
Yates
,
J. Appl. Phys.
73
,
4927
(
1993
).
6.
H. D.
Goldbach
,
V.
Verlaan
,
C. H. M.
van der Werf
,
W. M.
Arnoldbik
, H. C. Rieffe, I. G. Romijn, A. W. Weeber, and
R. E. I.
Schropp
,
Amorph. Nanocrys. Silicon Sci. Technol.
862
,
293
(
2005
).
7.
P.
Grunow
and
S.
Krauter
, “
Modelling of the encapsulation factors for photovoltaic modules
,” in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, Vol.
2
(
2006
), pp.
2152
2155
.
8.
T.
Takakura
,
R.
Imai
,
Y.
Okamoto
, and
H.
Taniguchi
,
Jpn. J. Appl. Phys.
49
,
046502
(
2010
).
9.
A. G.
Aberle
and
R.
Hezel
,
Prog. Photovolt.
5
,
29
(
1997
).
10.
H.
Nagel
,
A. G.
Aberle
, and
R.
Hezel
,
Prog. Photovolt.
7
,
245
(
1999
).
11.
I. O.
Parm
,
K.
Kim
,
D. G.
Lim
,
J. H.
Lee
,
J. H.
Heo
,
J.
Kim
,
D. S.
Kim
,
S. H.
Lee
, and
J.
Yi
,
S0l. Energ. Mat. Sol. C.
74
,
97
(
2002
).
12.
W.
Soppe
,
H.
Rieffe
, and
A.
Weeber
,
Prog. Photovolt.
13
,
551
(
2005
).
13.
V.
Verlaan
,
C. H. M.
van der Werf
,
Z. S.
Houweling
,
I. G.
Romijn
,
A. W.
Weeber
,
H. F. W.
Dekkers
,
H. D.
Goldbach
, and
R. E. I.
Schropp
,
Prog. Photovolt.
15
,
563
(
2007
).
14.
J.
Yoo
,
S.
Kumar Dhungel
, and
J.
Yi
,
Thin Solid Films
515
,
7611
(
2007
).
15.
S.
Jung
,
D.
Gong
, and
J.
Yi
,
Sol. Energ. Mat. Sol. C.
95
,
546
550
(
2011
).
16.
X.-S.
Wang
,
G.
Zhai
,
J.
Yang
, and
N.
Cue
,
Phys. Rev. B
60
,
R2146
(
1999
).
17.
G.
Zhai
,
J.
Yang
,
N.
Cue
, and
X. S.
Wang
,
Thin Solid Films
366
,
121
(
2000
).
18.
P.
Aubert
,
H. J.
von Bardeleben
,
F.
Delmotte
,
J. L.
Cantin
, and
M. C.
Hugon
,
Phys. Rev. B
59
,
10677
(
1999
).
19.
N.
Ikarashi
,
K.
Watanabe
, and
Y.
Miyamoto
,
J. Appl. Phys
90
,
2683
(
2001
).
20.
P. M.
Lenahan
and
S. E.
Curry
,
Appl. Phys. Lett.
56
,
157
(
1990
).
21.
W. L.
Warren
,
P. M.
Lenahan
, and
S. E.
Curry
,
Phys. Rev. Lett.
65
,
207
(
1990
).
22.
G.
Pacchioni
and
D.
Erbetta
,
Phys. Rev. B
60
,
12617
12625
(
1999
).
23.
24.
F.
de Brito Mota
,
J. F.
Justo
, and
A.
Fazzio
,
Phys. Rev. B
58
,
8323
(
1998
).
25.
F.
de Brito Mota
,
J. F.
Justo
, and
A.
Fazzio
,
J. Appl. Phys.
86
,
1843
(
1999
).
26.
W.
Smith
and
T. R.
Forester
,
J. Mol. Graphics
198/199
,
796
(
1996
).
27.
S. L.
Roux
and
P.
Jund
,
Comp. Mater. Sci.
49
,
70
(
2010
).
28.
F.
Alvarez
and
A. A.
Valladares
,
Phys. Rev. B
68
,
205203
(
2003
).
29.
M. M.
Guraya
,
H.
Ascolani
,
G.
Zampieri
,
J. I.
Cisneros
,
J. H.
Dias da Silva
, and
M. P.
Cantão
,
Phys. Rev. B
42
,
5677
(
1990
).
30.
J.
Robertson
,
Philos. Mag. B
69
,
307
(
1994
).
31.
F. L.
Martínez
,
A.
del Prado
,
I.
Mártil
,
G.
González-Díaz
,
B.
Selle
, and
I.
Sieber
,
J. Appl. Phys.
86
,
2055
(
1999
).
32.
F. L.
Martínez
,
A.
del Prado
,
I.
Mártil
,
D.
Bravo
, and
F. J.
López
,
J. Appl. Phys.
88
,
2149
(
2000
).
You do not currently have access to this content.