Three-dimensional simulation is used to study the electron beam induced current collected by a nano-contact forming a nano-junction. For the calculation the surface recombination velocity is supposed to be either infinite or zero. The influence of the bulk diffusion length, energy of the incident electron beam, shape and size of the depletion zone beneath the nano-contact on the induced current collected by the nano-junction is studied. From the fit of the simulated data, the minority carrier effective diffusion length is extracted, and its variation with the electron beam energy is compared with experimental measurements obtained with the nano-EBIC (electron beam induced current) technique that we have developed by combining scanning probe microscopy and scanning electron microscopy. The effective diffusion length is an increasing function with electron beam energy up to a certain value beyond which it decreases. The simulation shows that the same behavior also occurs in the case of the conventional detection by a semi-infinite Schottky contact perpendicular to the electron beam. This is the first time, to our knowledge, that this behavior is pointed out.

1.
H. J.
Leamy
,
J. Appl. Phys.
53
,
R51
(
1982
).
2.
F.
Koch
,
W.
Hergert
,
G.
Oelgart
, and
N.
Puhlmann
,
Phys. Status Solidi A
109
,
261
(
1988
).
3.
N.
Puhlmann
and
G.
Oelgart
,
Phys. Status Solidi A
122
,
705
(
1990
).
4.
D.
Cavalcoli
,
A.
Cavallini
, and
A.
Casaldini
,
J. Appl. Phys.
70
,
2163
(
1991
).
5.
D. S. H.
Chan
,
V. K. S.
Ong
, and
J. C. H.
Phang
,
IEEE Trans. Electron. Dev.
42
,
963
(
1995
).
6.
L.
Chernyak
,
A.
Osinsky
,
H.
Temkin
,
J. W.
Yang
,
Q.
Chen
, and
M.
Asif Khan
,
Appl. Phys. Lett.
69
,
2531
(
1996
).
7.
N.
Kuroda
,
C.
Sasaoka
,
A.
Kimura
,
A.
Usui
, and
Y.
Mochizuki
,
J. Cryst. Grow.
189/190
,
551
(
1998
).
8.
S. Q.
Zhu
,
E. I.
Rau
, and
F. H.
Yang
,
Semicond. Sci. Technol.
18
,
361
(
2003
).
9.
L.
Chernyak
,
A.
Osinsky
, and
A.
Schulte
,
Solid State Electron.
45
,
1687
(
2001
).
10.
T.
Miyajima
,
M.
Ozawa
,
T.
Asatsuma
,
H.
Kawai
, and
M.
Ikeda
,
J. Cryst. Growth.
189/190
,
768
(
1998
).
11.
M.
Troyon
,
H. N.
Lei
,
Z.
Wang
, and
G.
Shang
,
Microsc. Microanal. Microstruct.
8
,
393
(
1997
).
12.
M.
Troyon
and
K.
Smaali
,
Appl. Phys. Lett.
90
,
212110
(
2007
).
13.
K.
Gacem
,
A.
El Hdiy
,
M.
Troyon
,
I.
Berbezier
, and
A.
Ronda
,
Nanotechnology
21
,
065706
(
2010
).
14.
D. C.
Joy
,
J. Microsc.
143
,
233
(
1986
).
15.
N.
Tabet
and
M.
Ledra
,
Mater. Sci. Eng. B
42
,
181
(
1996
).
16.
R.
Corkich
,
P. P.
Altermatt
, and
G.
Heiser
,
Sol. Energy Mater. Sol. Cells
65
,
63
(
2001
).
17.
M.
Ledra
and
N.
Tabet
,
J. Phys. D: Appl. Phys.
38
,
3845
(
2005
).
18.
N. N.
Negulyaev
,
E. B.
Yakimov
, and
S. I.
Zaitsev
,
Phys. Status Solidi C
2
,
1822
(
2005
).
19.
M.
Ledra
, and
N.
Tabet
,
Superlattices Microstuct.
45
,
444
(
2009
).
20.
P. D.
Szkutnik
,
A.
Karmous
,
F.
Bassani
,
A.
Ronda
,
I.
Berbezier
,
K.
Gacem
,
A.
El Hdiy
, and
M.
Troyon
,
Eur. Phys. J. Appl. Phys.
41
,
103
(
2008
).
21.
H.
Hertz
,
J. Reine Angew. Mathematik
92
,
156
(
1882
).
22.
G. D. J.
Smit
,
S.
Rogge
, and
T. M.
Hlapwijk
,
Appl. Phys. Lett.
81
,
3852
(
2002
).
23.
G.
Love
,
M. G. C.
Cox
, and
V. D.
Scott
,
J. Phys. D: Appl. Phys.
10
,
7
(
1977
).
24.
L.
Reimer
and
D.
Stelter
,
Scanning
8
,
265
(
1986
).
25.
D. C.
Joy
, in Proceeding of European Meeting on Electron Microscopy 1988, edited by A. J. Craven and H. Elder (Inst. of Physics, London, 1988),
Inst. Phys. Conf. Ser.
93
,
23
.
26.
D. E.
Newbury
,
D. C.
Joy
,
P.
Echlin
,
C. E.
Fiori
, and
J. I.
Goldstein
,
Advanced Scanning Electron Microscopy and X-ray Microanalysis
, edited by Kluwer/Plenum Press (
Plenum Press
,
New York
,
1986
).
27.
H. E.
Bishop
, in
Use of Monte Carlo calculation in electron probe microanalysis and scanning electron microscopy
,
NBS Special Publication
Vol.
460
, edited by
K. F. J.
Heinrich
,
D. E.
Newbury
, and
H.
Yakowitz
, (
Washington, D. C.
,
1976
), pp.
5
13
.
28.
D. C.
Joy
and
S.
Luo
,
Scanning
11
,
176
(
1989
).
29.
D. C.
Joy
,
Scan. Electr. Microsc.
5
,
329
(
1991
).
30.
R.
Shimizu
and
Z. J.
Ding
,
Rep. Prog. Phys.
55
,
487
(
1992
).
31.
M. J.
Berger
and
S. M.
Selzer
, in
Studies in Penetration of Charged Particles in Matter
, edited by
V.
Fano
(
Nat. Acad. Sci., Nat. Res. Council
,
1967
), Pub. No. 1133, Chap. 10.
32.
D.
Liljequist
,
J. Phys. D: Appl. Phys.
16
,
1567
(
1983
).
33.
C.
Donolato
,
Solid-State Electron.
28
,
1143
(
1985
).
34.
C. J.
Wu
and
D. B.
Wittry
,
J. Appl. Phys.
49
,
2827
(
1978
).
35.
R.
Scheer
,
M.
Wilheim
, and
H. J.
lewrenz
,
J. Appl. Phys.
66
,
5412
(
1989
).
36.
J. L.
Maurice
,
J. Phys. III
, France
3
,
603
(
1993
).
37.
D.
Ballutaud
,
A.
Rivière
,
M.
Rusu
,
S.
Bourdais
, and
A.
Slaoui
,
Thin Sol. Film.
403–404
,
549
(
2002
).
38.
E. B.
Yakimov
,
P. S.
Vergeles
,
A. Y.
Polyakov
,
N. B.
Smirnov
,
A. V.
Govorkov
,
I.-H.
Lee
, and
C. R.
Lee
,
Appl. Phys. Lett.
92
,
042118
(
2008
).
39.
B.
Sieber
,
C. M.
Ruiz
, and
V.
Bermudez
,
Superlatt. Microstruc.
45
,
161
(
2009
).
40.
Q. T.
Doan
,
A.
El Hdiy
, and
M.
Troyon
,
J. Appl. Phys.
110
,
024514
(
2011
).
41.
L.
Jastrzebski
,
J.
Lagowski
, and
H. C.
Gatos
,
Appl. Phys. Lett.
27
,
537
(
1975
).
You do not currently have access to this content.