We prove that interfacial asperity sharpness allows for tuning superlattice in-plane thermal conductivity below or above the limit of high roughness derived from the Lucas-Ziman (LZ) model. Whereas LZ’s model predicts molecular dynamic (MD) results of Lennard-Jones superlattices for small asperities, it has to be modified with a roughness- and sharpness-dependent layer thickness to remain relevant at higher roughness. For the case of sharpest asperities, the modified LZ model still fails, and ray-tracing computations matching MD data reveal a phonon-trap effect in the asperity valleys. This behavior scales with the Knudsen number and should appear at the micron scale in large mean-free-path crystals, such as silicon.

1.
E. W.
Montroll
,
J. Chem. Phys.
18
(
2
),
183
(
1950
).
2.
H. P.
Baltes
and
E. R.
Hilf
,
Solid State Commun.
12
(
5
),
369
(
1973
).
3.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
(
2
),
793
(
2003
).
4.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
(
7175
),
163
(
2008
).
5.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
,
Phys. Rev. Lett.
101
(
10
),
105501
(
2008
).
6.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett
83
(
14
),
2934
(
2003
).
7.
M. P.
Zaitlin
,
L. M.
Scherr
, and
A. C.
Anderson
,
Phys. Rev. B
12
(
10
),
4487
(
1975
).
8.
P. J.
Lin-Chung
and
T. L.
Reinecke
,
Phys. Rev. B
51
(
19
),
13244
(
1995
).
9.
L. D.
Hicks
,
T. C.
Harman
, and
M. S.
Dresselhaus
,
Appl. Phys. Lett.
63
(
23
),
3230
(
1993
).
10.
G.
Mahan
, in
Thermal Conductivity
, edited by
T. M.
Tritt
(
Springer
,
New York
,
2004
), pp.
153
165
.
11.
G.
Chen
,
J. Heat Transfer
121
(
4
),
945
(
1999
).
12.
C.
Dames
and
G.
Chen
,
J. Appl. Phys.
95
(
2
),
682
(
2004
).
13.
E. S.
Landry
,
M. I.
Hussein
, and
A. J. H.
McGaughey
,
Phys. Rev. B
77
(
18
),
184302
(
2008
).
14.
J.
Shiomi
and
S.
Maruyama
,
Phys. Rev. B
74
(
15
),
155401
(
2006
).
15.
A.
Majumdar
,
J. Heat Transfer
113
(
4
),
797
(
1991
).
16.
G.
Chen
,
J. Heat Transfer
119
(
2
),
220
(
1997
).
17.
B. C.
Daly
,
H. J.
Maris
,
K.
Imamura
, and
S.
Tamura
,
Phys. Rev. B
66
(
2
),
024301
(
2002
).
18.
K.
Termentzidis
,
P.
Chantrenne
, and
P.
Keblinski
,
Phys. Rev. B
79
(
21
),
214307
(
2009
).
19.
K.
Termentzidisa
,
S.
Merabiad
,
P.
Chantrennea
, and
P.
Keblinskie
,
Int. J. Heat Mass Transfer
54
(
9–10
),
2014
(
2011
).
20.
J. M.
Ziman
,
Electrons and Phonons
(
Clarendon
,
Oxford
,
1960
).
21.
Y.
Chen
,
D.
Li
,
J.
Yang
,
Y.
Wu
,
J. R.
Lukes
, and
A.
Majumdar
,
Physica B
349
(
1–4
),
270
(
2004
).
22.
Y.
Chen
,
D.
Li
,
J. R.
Lukes
,
Z.
Ni
, and
M.
Chen
,
Phys. Rev. B
72
(
17
),
174302
(
2005
).
23.
J. R.
Lukes
,
D. Y.
Li
,
X. G.
Liang
, and
C. L.
Tien
,
J. Heat Transfer
122
(
3
),
536
(
2000
).
24.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
25.
For more information on LAMMPS, see http://lammps.sandia.gov.
26.
J. M.
Haile
,
Molecular Dynamics Simulation: Elementary Methods
(
Wiley
,
New York
,
1992
).
27.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
(
14
),
144306
(
2002
).
28.
A. J. H.
McGaughey
and
M.
Kaviany
,
Phys. Rev. B
69
(
9
),
094303
(
2004
).
29.
C.
Feldman
and
M. L.
Klein
,
Phys. Lett. A
25
(
3
),
190
(
1967
).
30.
M. S. P.
Lucas
,
J. Appl. Phys.
36
(
5
),
1632
(
1965
).
31.
S. B.
Soffer
,
J. Appl. Phys.
38
(
4
),
1710
(
1967
).
32.
Y.
Touloukian
,
Thermophysical Properties of Matter
, Vol.
3
(
Plenum
,
New York
,
1970
).
33.
J. E.
Turney
,
E. S.
Landry
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
79
(
6
),
064301
(
2009
).
34.
A. L.
Moore
,
S. K.
Saha
,
R. S.
Prasher
, and
L.
Shi
,
Appl. Phys. Lett.
93
(
8
),
083112
(
2008
).
35.
G.
Chen
,
Phys. Rev. B
57
(
23
),
14958
(
1998
).
36.
P.
Heino
,
Phys. Rev. B
71
(
14
),
144302
(
2005
).
You do not currently have access to this content.