We prove that interfacial asperity sharpness allows for tuning superlattice in-plane thermal conductivity below or above the limit of high roughness derived from the Lucas-Ziman (LZ) model. Whereas LZ’s model predicts molecular dynamic (MD) results of Lennard-Jones superlattices for small asperities, it has to be modified with a roughness- and sharpness-dependent layer thickness to remain relevant at higher roughness. For the case of sharpest asperities, the modified LZ model still fails, and ray-tracing computations matching MD data reveal a phonon-trap effect in the asperity valleys. This behavior scales with the Knudsen number and should appear at the micron scale in large mean-free-path crystals, such as silicon.
REFERENCES
1.
E. W.
Montroll
, J. Chem. Phys.
18
(2
), 183
(1950
).2.
H. P.
Baltes
and E. R.
Hilf
, Solid State Commun.
12
(5
), 369
(1973
).3.
D. G.
Cahill
, W. K.
Ford
, K. E.
Goodson
, G. D.
Mahan
, A.
Majumdar
, H. J.
Maris
, R.
Merlin
, and S. R.
Phillpot
, J. Appl. Phys.
93
(2
), 793
(2003
).4.
A. I.
Hochbaum
, R.
Chen
, R. D.
Delgado
, W.
Liang
, E. C.
Garnett
, M.
Najarian
, A.
Majumdar
, and P.
Yang
, Nature
451
(7175
), 163
(2008
).5.
R.
Chen
, A. I.
Hochbaum
, P.
Murphy
, J.
Moore
, P.
Yang
, and A.
Majumdar
, Phys. Rev. Lett.
101
(10
), 105501
(2008
).6.
D.
Li
, Y.
Wu
, P.
Kim
, L.
Shi
, P.
Yang
, and A.
Majumdar
, Appl. Phys. Lett
83
(14
), 2934
(2003
).7.
M. P.
Zaitlin
, L. M.
Scherr
, and A. C.
Anderson
, Phys. Rev. B
12
(10
), 4487
(1975
).8.
P. J.
Lin-Chung
and T. L.
Reinecke
, Phys. Rev. B
51
(19
), 13244
(1995
).9.
L. D.
Hicks
, T. C.
Harman
, and M. S.
Dresselhaus
, Appl. Phys. Lett.
63
(23
), 3230
(1993
).10.
G.
Mahan
, in Thermal Conductivity
, edited by T. M.
Tritt
(Springer
, New York
, 2004
), pp. 153
–165
.11.
G.
Chen
, J. Heat Transfer
121
(4
), 945
(1999
).12.
C.
Dames
and G.
Chen
, J. Appl. Phys.
95
(2
), 682
(2004
).13.
E. S.
Landry
, M. I.
Hussein
, and A. J. H.
McGaughey
, Phys. Rev. B
77
(18
), 184302
(2008
).14.
J.
Shiomi
and S.
Maruyama
, Phys. Rev. B
74
(15
), 155401
(2006
).15.
A.
Majumdar
, J. Heat Transfer
113
(4
), 797
(1991
).16.
G.
Chen
, J. Heat Transfer
119
(2
), 220
(1997
).17.
B. C.
Daly
, H. J.
Maris
, K.
Imamura
, and S.
Tamura
, Phys. Rev. B
66
(2
), 024301
(2002
).18.
K.
Termentzidis
, P.
Chantrenne
, and P.
Keblinski
, Phys. Rev. B
79
(21
), 214307
(2009
).19.
K.
Termentzidisa
, S.
Merabiad
, P.
Chantrennea
, and P.
Keblinskie
, Int. J. Heat Mass Transfer
54
(9–10
), 2014
(2011
).20.
21.
Y.
Chen
, D.
Li
, J.
Yang
, Y.
Wu
, J. R.
Lukes
, and A.
Majumdar
, Physica B
349
(1–4
), 270
(2004
).22.
Y.
Chen
, D.
Li
, J. R.
Lukes
, Z.
Ni
, and M.
Chen
, Phys. Rev. B
72
(17
), 174302
(2005
).23.
J. R.
Lukes
, D. Y.
Li
, X. G.
Liang
, and C. L.
Tien
, J. Heat Transfer
122
(3
), 536
(2000
).24.
S. J.
Plimpton
, J. Comput. Phys.
117
, 1
(1995
).25.
For more information on LAMMPS, see http://lammps.sandia.gov.
26.
J. M.
Haile
, Molecular Dynamics Simulation: Elementary Methods
(Wiley
, New York
, 1992
).27.
P. K.
Schelling
, S. R.
Phillpot
, and P.
Keblinski
, Phys. Rev. B
65
(14
), 144306
(2002
).28.
A. J. H.
McGaughey
and M.
Kaviany
, Phys. Rev. B
69
(9
), 094303
(2004
).29.
C.
Feldman
and M. L.
Klein
, Phys. Lett. A
25
(3
), 190
(1967
).30.
M. S. P.
Lucas
, J. Appl. Phys.
36
(5
), 1632
(1965
).31.
S. B.
Soffer
, J. Appl. Phys.
38
(4
), 1710
(1967
).32.
33.
J. E.
Turney
, E. S.
Landry
, A. J. H.
McGaughey
, and C. H.
Amon
, Phys. Rev. B
79
(6
), 064301
(2009
).34.
A. L.
Moore
, S. K.
Saha
, R. S.
Prasher
, and L.
Shi
, Appl. Phys. Lett.
93
(8
), 083112
(2008
).35.
G.
Chen
, Phys. Rev. B
57
(23
), 14958
(1998
).36.
P.
Heino
, Phys. Rev. B
71
(14
), 144302
(2005
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.