The spontaneous emission characteristics of green- and red-emitting InGaN quantum wells (QWs) on ternary InGaN substrate are analyzed, and the radiative recombination rates for the QWs grown on ternary substrate were compared with those of InGaN QWs on GaN templates. For green- and red-emitting InGaN QWs on In0.15Ga0.85N substrate, the spontaneous emission rates were found as ∼2.5-3.2 times of the conventional approach. The enhancement in spontaneous emission rate can be achieved by employing higher In-content InGaN ternary substrate, which is also accompanied by a reduction in emission wavelength blue-shift from the carrier screening effect. The use of InGaN substrate is expected to result in the ability for growing InGaN QWs with enhanced spontaneous emission rates, as well as reduced compressive strain, applicable for green- and red-emitting light-emitting diodes.

1.
A.
Venkatachalam
,
B.
Klein
,
J. -H
Ryou
,
S. C.
Shen
,
R. D.
Dupuis
,
P. D.
Yoder
,
IEEE J. Quantum Electron.
46
,
238
(
2010
).
2.
M.
Kneissl
,
D. W.
Treat
,
M.
Teepe
,
N.
Miyashita
, and
N. M.
Johnson
,
Appl. Phys. Lett.
82
,
2386
(
2003
).
3.
R. M.
Farrell
,
D. F.
Feezell
,
M. C.
Schmidt
,
D. A.
Haeger
,
K.M.
Kelchner
,
K.
Iso
,
H.
Yamada
,
M.
Saito
,
K.
Fujito
,
D. A.
Cohen
,
J. S.
Speck
,
S P.
DenBaars
, and
S.
Nakamura
,
Jpn. J. Appl. Phys.
46
,
L761
(
2007
).
4.
M. H.
Crawford
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1028
(
2009
).
5.
T.
Shioda
,
Y.
Tomita
,
M.
Sugiyama
,
Y.
Shimogaki
, and
Y.
Nakano
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1053
(
2009
).
6.
M. H.
Kim
,
M. F.
Schubert
,
Q.
Dai
,
J. K.
Kim
,
E. F.
Schubert
,
J.
Piprek
, and
Y.
Park
,
Appl. Phys. Lett.
91
,
183507
(
2007
).
7.
T.
Jung
,
L. K.
Lee
, and
P. C.
Ku
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1073
(
2009
).
8.
X.
Li
,
S. G.
Bishop
, and
J. J.
Coleman
,
Appl. Phys. Lett.
73
,
1179
(
1998
).
9.
G.
Liu
,
H.
Zhao
,
J.
Zhang
,
J. H.
Park
,
L. J.
Mawst
, and
N.
Tansu
,
Nanoscale Res. Lett.
6
,
342
(
2011
).
10.
K.
McGroddy
,
A.
David
,
E.
Matioli
,
M.
Iza
,
S.
Nakamura
,
S.
DenBaars
,
J. S.
Speck
,
C.
Weisbuch
, and
E. L.
Hu
,
Appl. Phys. Lett.
93
,
103502
(
2008
).
11.
S.
Chhajed
,
W.
Lee
,
J.
Cho
,
E. F.
Schubert
, and
J. K.
Kim
,
Appl. Phys. Lett.
98
,
071102
(
2011
).
12.
J. J.
Wierer
,
A.
David
, and
M. M.
Megens
,
Nature Photon.
3
,
163
(
2009
).
13.
X. H.
Li
,
R.
Song
,
Y. K.
Ee
,
P.
Kumnorkaew
,
J. F.
Gilchrist
, and
N.
Tansu
,
IEEE Photonics Journal
3
,
489
(
2011
).
14.
D. D.
Koleske
,
A. J.
Fische
,
A. A.
Allerman
,
C. C.
Mitchell
,
K. C.
Cross
,
S. R.
Kurtz
,
J. J.
Figiel
,
K. W.
Fullmer
, and
W. G.
Breiland
,
Appl. Phys. Lett.
81
,
1940
(
2002
).
15.
B. N.
Pantha
,
I.
Feng
,
K.
Aryal
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Express
4
,
051001
(
2011
).
16.
J.
Zhang
,
S.
Kutlu
,
G. Y.
Liu
, and
N.
Tansu
,
J. Appl. Phys.
110
,
043710
(
2011
).
17.
C. J.
Neufeld
,
N. G.
Toledo
,
S. C.
Cruz
,
M.
Iza
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Appl. Phys. Lett.
93
,
143502
(
2008
).
18.
J.-H.
Ryou
,
P. D.
Yoder
,
J.
Liu
,
Z.
Lochner
,
H.
Kim
,
S.
Choi
,
H. J.
Kim
, and
R. D.
Dupuis
,
IEEE J. Sel. Top. Quantum Electron.
15
,
1080
(
2009
).
19.
I. H.
Brown
,
P.
Blood
,
P. M.
Smowton
,
J. D.
Thomson
,
S. M.
Olaizola
,
A. M.
Fox
,
P. J.
Parbrook
, and
W. W.
Chow
,
IEEE J. Quantum Electron.
42
,
1202
(
2006
).
20.
S. H.
Park
and
S. L.
Chuang
,
J. Appl. Phys.
87
,
353
(
2000
).
21.
H.
Zhao
,
G.
Liu
,
J.
Zhang
,
J. D.
Poplawsky
,
V.
Dierolf
, and
N.
Tansu
,
Opt. Express
19
,
A991
(
2011
).
22.
H.
Zhao
,
G. S.
Huang
,
G.
Liu
,
X. H.
Li
,
J. D.
Poplawsky
,
S.
Tafon Penn
,
V.
Dierolf
, and
N.
Tansu
,
Appl. Phys. Lett.
95
,
061104
(
2009
).
23.
H.
Zhao
,
G.
Liu
, and
N.
Tansu
,
Appl. Phys. Lett.
97
,
131114
(
2010
).
24.
S. H.
Park
,
D.
Ahn
, and
J. W.
Kim
,
Appl. Phys. Lett.
94
,
041109
(
2009
).
25.
S. H.
Park
,
D.
Ahn
,
B. H.
Koo
, and
J. W.
Kim
,
Appl. Phys. Lett.
95
,
063507
(
2009
).
26.
C. T.
Liao
,
M. C.
Tsai
,
B. T.
Liou
,
S. H.
Yen
, and
Y. K.
Kuo
,
J. Appl. Phys.
108
,
063107
(
2010
).
27.
S. H.
Park
,
D.
Ahn
,
J.
Park
, and
Y. T.
Lee
,
Jpn. J. Appl. Phys.
50
,
072101
(
2011
).
28.
T.
Shioda
,
H.
Yoshida
,
K.
Tachibana
,
N.
Sugiyama
, and
S.
Nunoue
,
“Enhanced internal quantum efficiency of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate,”
in
Proceedings of the 9th International Conference on Nitride Semiconductors
,
Glasgow, Scotland
, July
2011
.
29.
M.
Shimizu
,
T.
Kawaguchi
,
K.
Hiramatsu
, and
N.
Sawaki
,
Solid-State Electron.
41
,
145
(
1997
).
30.
See www.eetimes.com/electronics-news/4189123/TDI-claims-first-InGaN-substrate for information about ternary InGaN substrate.
31.
See www.oxford-instruments.com/products/etching-deposition-growth/processes-techniques/hvpe/Pages/hydride-vapour-phase-epitaxy.aspx for information about ternary InGaN substrate. (Click “Templates” to access the information of the ternary InGaN substrates).
32.
T. K.
Sharma
, and
E.
Towe
,
Appl. Phys. Lett.
96
,
191105
(
2010
).
33.
S. H.
Park
,
Y.T.
Moon
,
J. S.
Lee
,
H. K.
Kwon
,
J. S.
Park
, and
D.
Ahn
,
Phys. Status Solidi A
208
,
195
(
2011
).
34.
S. L.
Chuang
,
IEEE J. Quantum Electron.
32
,
1791
(
1996
).
35.
S. L.
Chuang
and
C. S.
Chang
,
Semicond. Sci. Technol.
12
,
252
(
1997
).
36.
S. L.
Chuang
,
Physics of Photonic Devices
, 2nd ed. (
Wiley
,
New York
,
2009
), Chap. 4.
37.
H.
Zhao
,
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
,
IEEE J. Quantum Electron.
45
,
66
(
2009
).
38.
I.
Vurgaftman
and
J.R.
Meyer
,
Nitride Semiconductor Devices
, edited by
J.
Piprek
(
Wiley
,
New York
,
2007
), Chap. 2.
39.
I.
Vurgaftman
and
J.R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
You do not currently have access to this content.