Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.

1.
E. E.
Fullerton
,
J. S.
Jiang
,
M.
Grimsditch
,
C. H.
Sowers
, and
S. D.
Bader
,
Phys. Rev. B
58
,
12193
(
1998
).
2.
Y.
Liu
,
S. G. E.
teVelthuis
,
J. S.
Jiang
,
Y.
Choi
,
S. D.
Bader
,
A. A.
Parizzi
,
H.
Ambaye
, and
V.
Lauter
,
Phys, Rev. B
83
,
174418
(
2011
).
3.
K. V.
O’Donaovan
,
J. A.
Borchers
,
C. F.
Majkrzak
,
O.
Hellwig
, and
E. E.
Fullerton
,
Phys. Rev. Lett.
88
,
067201
(
2002
).
4.
S.
Roy
,
M. R.
Fitzsimmons
,
S.
Park
,
M.
Dorn
,
O.
Petracic
,
I. V.
Roshchin
,
Z.
Li
,
X.
Batlle
,
R.
Morales
,
A.
Misra
,
X.
Zhang
,
K.
Chesnel
,
J. B.
Kortright
,
S. K.
Sinha
, and
I. K.
Schuller
,
Phys. Rev. Lett.
95
,
047201
(
2005
).
5.
Ch.
Binek
,
S.
Polisetty
,
Xi
He
, and
A.
Berger
,
Phys. Rev. Lett.
96
,
067201
(
2006
).
6.
Xi
He
,
Yi
Wang
,
Ning
Wu
,
A. N.
Caruso
,
E.
Vescovo
,
K. D.
Belashchenko
,
P. A.
Dowben
, and
Ch.
Binek
,
Nature Mater.
9
,
579
(
2010
).
7.
R.
Skomski
and
J. M. D.
Coey
,
Phys. Rev. B
48
,
15812
(
1993
).
8.
T.
Mukherjee
,
S.
Sahoo
,
R.
Skomski
,
D. J.
Sellmyer
, and
Ch.
Binek
,
Phys. Rev. B
79
,
144406
(
2009
).
9.
E.
Kneller
and
R.
Hawig
,
IEEE Trans. Magn.
27
,
3588
(
1991
).
10.
R.
Victora
and
X.
Shen
,
IEEE Trans. Magn.
41
,
2828
(
2005
).
11.
D.
Sues
,
Appl. Phys, Lett.
89
,
113105
(
2006
).
12.
J. F.
Ankner
and
G. P.
Felcher
,
J. Magn. Magn. Mater.
200
,
741
(
1999
).
13.
S. S. P.
Parkin
,
Phys. Rev. Lett.
67
,
3598
(
1991
).
14.
E. Y.
Tsymbal
and
D. G.
Pettifor
,
Solid State Phys.
56
,
113
(
2001
).
15.
M. S.
Khatri
,
H.
Schlörb
,
S.
Fähler
, and
L.
Schultz
,
Phys. Status Solidi A
208
,
104
(
2011
).
16.
R. M.
Osgood
 III
,
S. D.
Bader
,
B. M.
Clemens
,
R. L.
White
, and
H.
Matsuyama
,
J. Magn. Magn. Mater.
182
,
297
(
1998
).
17.
E
Goto
,
N.
Hayashi
,
T.
Miyashita
, and
K.
Nakagawa
,
J. Appl. Phys.
36
,
2951
(
1965
).
18.
C. F.
Majkrzak
,
Physica (Amsterdam)
221B
,
342
(
1996
).
19.
M. R.
Fitzsimmons
and
C. F.
Majkrzak
, “
Application of polarized neutron reflectometry to studies of artificially structured magnetic materials
,” in
Modern Techniques for Characterizing Magnetic Materials
, edited by
Y.
Zhu
(
Kluwer
,
Boston
,
2005
), pp.
107
152
.
20.
M. R.
Fitzsimmons
,
P.
Yashar
,
C.
Leighton
,
I. K.
Schuller
,
J.
Nogués
,
C. F.
Majkrzak
, and
J. A.
Dura
,
Phys. Rev. Lett.
84
,
3986
(
2000
).
21.
We attempted a quantitative analysis of the PNR data but encountered two significant problems. First, in order to resolve the fringes from the 1+um thick sample, we required extremely stringent collimation of the neutron beam which given the intensity of the neutron beam would have required far more beam time than was practical. Second, due to the large thickness of the sample, we require at least 128 bit floating point precision in order to calculate the reflectivity in the evanescent region of wavevector transfer. We lack access to such computing resources. Simulation of the PNR data using the depth profile determined from the Stoner-Wohlfarth and exchange spring model assumptions is in qualitative agreement with the PNR data.
22.
F.
Suits
,
IEEE Trans. Magn.
26
,
2353
(
1990
).
23.
H.
Kronmüller
, and
D.
Goll
,
Phys. Status Solidi B
,
248
,
2361
(
2011
).
24.
K.
Mibu
,
T.
Nagahama
,
T.
Shinjo
, and
T.
Ono
,
Phys. Rev. B
58
,
6442
(
1998
).
25.
A.
Billa
,
H.B.
Braun
,
J. Magn. Magn. Mater.
272
,
1266
(
2004
).
26.
D. Y.
Kim
,
C. G.
Kim
,
B. S.
Park
,
D. G.
Hwang
, and
S. S.
Lee
,
IEEE Trans. Magn.
35
,
2935
(
1999
).
27.
G.
Sung
,
C.
Park
, and
K.
Shin
,
J. Appl. Phys.
85
,
5786
(
1999
).
28.
A. F.
Mayadas
,
J. F.
Janak
, and
A.
Gangulee
,
J. Appl. Phys.
45
,
2780
(
1974
).
29.
J.
Guo
,
Y.
Tzeng
,
J.
van Lierop
,
S.
Chang
, and
K.
Lin
,
Jpn. J. Appl. Phys.
48
,
073003
(
2009
).
30.
H.
Li
,
J.
Ma
,
G.
Yu
,
S.
Long
,
H.
Zhao
, and
F.
Zhu
,
Chin. Sci. Bull.
48
,
1087
(
2003
).
31.
Y. F.
Liu
,
J. W.
Cai
, and
L.
Sun
,
Appl. Phys. Lett.
96
,
092509
(
2010
).
32.
W. Y.
Lee
,
M. F.
Toney
, and
D.
Mauri
,
IEEE Trans. Magn.
36
,
381
(
2000
).
You do not currently have access to this content.