We investigate the electron/hole trapping phenomena in alumina blocking oxide and their impact on the program/erase operations and retention of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) memory devices. For this purpose, we perform simulations using a physical model that reproduces the charge injection/trapping in TANOS devices, which is extended in order to account for the charge trapping phenomena in the blocking layer. We derive the electrical characteristics of both electron and hole traps in Al2O3 by reproducing the measured program, erase, and retention transients. Our results show that the amount of electron charge trapped in the alumina during a program operation strongly depends on the stack composition and program voltages and can account for up to 25% of the total threshold voltage shift, whereas hole trapping during erase is negligible. Finally, we investigate the degradation of retention caused by the electron trapping in the alumina blocking layer, which is shown to result in an accelerated charge loss.

1.
S.
Sato
and
T.
Yamaguchi
,
Solid-State Electron.
17
,
367
(
1974
).
2.
M.
Specht
,
H.
Reisinger
,
F.
Hofmann
,
T.
Schulz
,
E.
Landgraf
,
R. J.
Luyken
,
W.
Rösner
,
M.
Griev
, and
L.
Risch
,
Solid-State Electron.
49
(
5
),
716
(
2005
).
3.
W. H.
Lee
,
T. J.
Clemens
,
R. C.
Keller
, and
L.
Manchanda
,
Dig. Tech. Pap. – Symp. VLSI Technol.
117
(
1997
).
4.
P.
Blomme
,
J.
De Vos
,
A.
Akheyar
,
L.
Haspeslagh
,
J.
Van Houdt
, and
K.
De Meyer
,
in Proceedings of the 21st Nonvolatile Semiconductor Memory Workshop, Monterey, CA, 12–16 February 2006
(
IEEE
,
New York
,
2006
),
p
52
.
5.
C. H.
Lee
,
K. I.
Choi
,
M. K.
Cho
,
Y. H.
Song
,
K. C.
Park
, and
K.
Kim
,
Tech. Dig. - Int. Electron Devices Meet.
613
(
2003
).
6.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
7.
A.
Kerber
,
E.
Cartier
,
R.
Degraeve
,
P. J.
Roussel
,
L.
Pantisano
,
T.
Kauerauf
,
G.
Groeseneken
,
H. E.
Maes
, and
U.
Schwalke
,
IEEE Trans. Electron Devices
50
(
5
),
1261
(
2003
).
8.
M.
Toledano-Luque
,
R.
Degraeve
,
M. B.
Zahid
,
B.
Kaczer
,
J.
Kittl
,
M.
Jurczak
,
G.
Groeseneken
, and
J.
Van Houdt
,
Tech. Dig. – Int. Electron Devices Meet.
749
(
2009
).
9.
X. F.
Zheng
,
W. D.
Zhang
,
B.
Govoreanu
,
D. R.
Aguado
,
J. F.
Zhang
, and
J.
Van Houdt
,
IEEE Trans. Electron Devices
57
(
1
),
288
(
2010
).
10.
D.
Liu
and
J.
Robertson
,
Microelectron. Eng.
86
(
7-9
),
1668
(
2009
).
11.
T.
Melde
,
M. F.
Beug
,
L.
Bach
,
S.
Roedel
,
C.
Ludwig
, and
T.
Mikolaijck
,
“Nitride thickness scaling limitations in TANOS charge trapping devices,” in Proceedings of the Non-Volatile Semiconductor Workshop, 2008, and the 2008 International Conference on Memory Technology and Design, 18–22 May 2008
(
IEEE
,
New York
,
2008
), pp.
130
132
.
12.
A.
Padovani
,
L.
Larcher
,
D.
Heh
, and
G.
Bersuker
,
IEEE Electron Device Lett.
30
(
8
),
882
(
2009
).
13.
A.
Padovani
,
L.
Larcher
,
D.
Heh
,
G.
Bersuker
,
V.
Della Marca
, and
P.
Pavan
,
Appl. Phys. Lett.
96
(
23
),
223505
(
2010
).
14.
F. R.
Libsch
and
M.
White
,
Solid-State Electron.
33
,
105
(
1990
).
15.
G.
Wang
and
M. H.
White
,
Solid-State Electron.
52
(
10
),
1491
(
2008
).
16.
E.
Vianello
,
F.
Driussi
,
A.
Arreghini
,
P.
Palestri
,
D.
Esseni
,
L.
Selmi
,
N.
Akil
,
M. J.
Van Duuren
, and
D. S.
Golubovic
,
IEEE Trans. Electron Devices
56
(
9
),
1980
(
2009
).
17.
L.
Larcher
,
A.
Padovani
,
V.
Della Marca
,
P.
Pavan
, and
A.
Bertacchini
,
Dig. Tech. Pap. – Symp. VLSI Technol.
52
(
2010
).
18.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
19.
20.
P. J.
McWhorter
,
S. L.
Miller
, and
T. A.
Dellin
,
J. Appl. Phys.
68
(
4
),
1902
(
1990
).
21.
A.
Paul
,
Ch.
Sridhar
,
S.
Gedam
, and
S.
Mahapatra
,
Tech. Dig. - Int. Electron Devices Meet.
439
(
2006
).
22.
S.-H.
Gu
,
C.-W.
Hsu
,
T.
Wang
,
W.-P.
Lu
,
Y.-H. J.
Ku
, and
C.-Y.
Lu
,
IEEE Trans. Electron Devices
54
(
1
),
90
(
2007
).
23.
V. V.
Afanas’ev
and
A.
Stesmans
,
J. Appl. Phys.
102
,
081301
(
2007
).
24.
Y. J.
Seo
,
K. C.
Kim
,
T. G.
Kim
,
Y. M.
Sung
,
H. Y.
Cho
,
M. S.
Joo
, and
S. H.
Pyi
,
Appl. Phys. Lett.
92
,
132104
(
2008
).
25.
Y. J.
Seo
,
K. C.
Kim
,
H. D.
Kim
,
T. G.
Kim
, and
H.-M.
An
,
J. Korean Phys. Soc.
53
(
6
),
3302
(
2008
).
26.
R.
Degraeve
,
M.
Cho
,
B.
Govoreanu
,
B.
Kaczer
,
M. B.
Zahid
,
J.
Van Houdt
,
M.
Jurczak
, and
G.
Groeseneken
,
Tech. Dig. - Int. Electron Devices Meet.
775
(
2008
).
27.
M. C.
Kim
,
S.
Kim
,
S.-H.
Choi
,
K.
Belay
,
R. G.
Elliman
, and
S. P.
Russo
,
IEEE Electron Device Lett.
30
(
8
),
837
(
2009
).
28.
V. A.
Gritsenko
,
S. S.
Nekrashevich
,
V. V.
Vasilev
, and
A. V.
Shaposhnikov
,
Microelectron. Eng.
86
,
1866
(
2009
).
29.
M.
Chang
,
Y.
Ju
,
J.
Lee
,
S.
Jung
,
H.
Choi
,
M.
Jo
,
S.
Jeon
, and
H.
Hwang
,
Appl. Phys. Lett.
93
,
022101
(
2008
).
30.
F.
Giustino
,
P.
Umari
, and
A.
Pasquariello
,
Microelectron. Eng.
72
(
1–4
),
299
(
2004
).
31.
L.
Vandelli
,
A.
Arreghini
,
A.
Padovani
,
L.
Larcher
,
G.
Van den bosch
,
V.
Della Marca
,
P.
Pavan
,
M.
Jurczak
, and
J.
Van Houdt
,
IEEE Int. Reliab. Phys. Symp. Proc.
731
(
2010
).
You do not currently have access to this content.