This study presents the results of passive acoustic diagnostics of an atmospheric pressure linear field jet source operating inflowing helium. Variations of the electrical, optical and acoustic parameters of the source are monitored with respect to changing gas flow rate [0.5–7 liters per minute (lpm)] and applied voltage amplitude (3.5–7 kV). It was found that the jet length and coupled power were maximized when the jet flow was laminar. Flow mode transitions (buoyant, laminar and turbulent) associated with the jet Richardson number could easily be distinguished acoustically through their unique wavelet scalograms. Each scalogram can also be explained through qualitative correlation with the discharge electrical parameters. As the jet became turbulent, low frequency oscillation (c. 180 Hz) bursts were present in the time-frequency trace which were compared to an empirical relation for the Richardson number in the case of flow induced oscillations. It was found that the frequency value correlated well with the frequency of 200 Hz determined from literature. Anomalous sparking events were detected which manifested as almost constant magnitude, broadband acoustic transients in the time-frequency domain. Comparisons between the average acoustic output power and the average dissipated power from the discharge at two different flow rates (4 lpm and 2 lpm) reveal an approximately equal linear trend for a fixed microphone-discharge placement while in the laminar flow regime. Due to the increased turbulence induced noise, however, no such linear correlation could be drawn. Finally, optical emission spectra from the discharge at a point 8 mm downstream of the plume exit were taken and correlations drawn for each flow regime.

1.
A.
Schutze
,
J.
Jeong
,
S.
Babayan
,
J.
Park
,
G.
Selwyn
, and
R.
Hicks
,
IEEE Trans. Plasma Sci.
26
,
1685
(
1998
).
2.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
,
1
(
2003
).
3.
Q.
Li
,
J.
Li
,
W.
Zhu
,
X.
Zhu
, and
Y.
Pu
,
Appl. Phys. Lett.
95
,
141502
(
2009
).
4.
X.
Lu
,
Z.
Jiang
,
Q.
Xiong
,
Z.
Tang
,
X.
Hu
, and
Y.
Pan
,
Appl. Phys. Lett.
92
,
081502
(
2008
).
5.
E.
Karakas
,
M.
Koklu
, and
M.
Laroussi
,
J. Phys. D
43
,
155202
(
2010
).
6.
Q.
Xiong
,
X.
Lu
,
K.
Ostrikov
,
Z.
Xiong
,
Y.
Xian
,
F.
Zhou
,
C.
Zou
,
J.
Hu
,
W.
Gong
, and
Z.
Jiang
,
Phys. Plasmas
16
,
043505
(
2009
).
7.
R.
Ye
and
W.
Zheng
,
Appl. Phys. Lett.
93
,
071502
(
2008
).
8.
W.
Zhu
,
Q.
Li
,
X.
Zhu
, and
Y.
Pu
,
J. Phys. D
42
,
202002
(
2009
).
9.
N.
Mericam-Bourdet
,
M.
Laroussi
,
A.
Begum
, and
E.
Karakas
,
J. Phys. D
42
,
055207
(
2009
).
10.
Q.
Xiong
,
X.
Lu
,
Y.
Xian
,
J.
Liu
,
C.
Zou
,
Z.
Xiong
,
W.
Gong
,
K.
Chen
,
X.
Pei
,
F.
Zou
,
J.
Hu
,
Z.
Jiang
, and
Y.
Pan
,
J. Appl. Phys.
107
,
073302
(
2010
).
11.
A.
Shashurin
,
M.
Shneider
,
A.
Dogariu
,
R.
Miles
, and
M.
Keidar
,
Appl. Phys. Lett.
94
,
231504
(
2009
).
12.
J.
Walsh
and
M.
Kong
,
Appl. Phys. Lett.
93
,
111501
(
2009
).
13.
G.
Fridman
,
A.
Brooks
,
M.
Balasubramanian
,
A.
Fridman
,
A.
Gutsol
,
V.
Vasilets
,
H.
Ayan
, and
G.
Friedman
,
Plasma Processes Polym.
4
,
370
(
2007
).
14.
Y.
Xian
,
X.
Lu
,
Z.
Tang
,
Q.
Xiong
,
W.
Gong
,
D.
Liu
,
Z.
Jiang
, and
Y.
Pan
,
J. Appl. Phys.
107
,
063308
(
2010
).
15.
Q.
Li
,
X.
Zhu
,
J.
Li
, and
Y.
Pu
,
J. Appl. Phys
107
,
043304
(
2010
).
16.
X.
Lu
,
Q.
Xiong
,
Z.
Xiong
,
J.
Hu
,
F.
Zhou
,
W.
Gong
,
Y.
Xian
,
C.
Zou
,
Z.
Tang
,
Z.
Jiang
, and
Y.
Pan
,
J. Appl. Phys
105
,
043304
(
2009
).
17.
N.
O’Connor
and
S.
Daniels
,
in 37th EPS Conference on Plasma Physics
(
Dublin City University
,
Dublin
,
2010
) p.
2
309
.
18.
J.
Tynan
,
V.
Law
,
P.
Ward
,
A.
Hynes
,
J.
Cullen
,
G.
Byrne
,
S.
Daniels
, and
D.
Dowling
,
Plasma Sources Sci. Technol.
19
,
015015
(
2010
).
19.
C. K.
Chui
,
An Introduction to Wavelets
(
Elsevier Science
,
San Diego
,
1992
).
20.
P. S.
Addison
,
The Illustrated Wavelet Transform Handbook
(
Institute of Physics Publishing
,
London
,
2002
).
21.
C. D.
McGillem
and
G. R.
Cooper
,
Continuous and Discrete Signal and System Analysis
(
Saunders College Publications
,
Philadelphia
,
1991
).
22.
V.
Law
,
V.
Milosavljeviác
,
N.
O’Connor
,
J.
Lalor
, and
S.
Daniels
,
Rev. Sci. Instrum.
79
,
094707
(
2008
).
23.
T.
Rossing
,
Springer Handbook of Acoustics
(
Springer Verlag
,
Berlin
,
2007
).
24.
T.
Nakamura
,
Flow-Induced Vibrations: Classifications and Lessons from Practical Experiences
(
Elsevier Science Ltd
,
2008
).
25.
B.
Cetegen
and
K.
Kasper
,
Phys. Fluids
8
,
2974
(
1996
).
26.
R.
Satti
and
A.
Agrawal
,
Int. J. Heat Fluid Flow
27
,
336
(
2006
).
27.
B.
Yildirim
and
A.
Agrawal
,
Exp. Fluids
38
,
161
(
2005
).
28.
D. W.
Green
and
R. H.
Perry
,
Perry’s Chemical Engineers’ Handbook (8th Edition)
(
McGraw Hill
,
New York
,
2008
).
29.
A.
Fridman
and
L.
Kennedy
,
Plasma Physics and Engineering
(
CRC
,
Boca Raton
,
2004
).
30.
P.
Morse
and
K.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton
,
1986
).
31.
N.
Bibinov
,
A.
Fateev
, and
K.
Wiesemann
,
J. Phys. D
34
,
1819
(
2001
).
You do not currently have access to this content.