Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density ne and the electron temperature Te profiles behind the shock wave were measured using a two-wavelength Mach–Zehnder interferometer along with emission spectroscopy. A TEA CO2 laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of ne and Te were, respectively, about 2 × 1024 m−3 and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer’s LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer’s model. The measured ne at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.

1.
A.
Kantrowitz
,
Aeronaut. Astronaut.
10
,
74
(
1972
).
2.
L. M.
Myrabo
,
D. G.
Messitt
, and
F. B.
Mead
, Jr.
,
AIAA Paper 98-1001
,
1998
.
3.
H.
Katsurayama
,
K.
Komurasaki
, and
Y.
Arakawa
,
Acta Astronaut.
65
,
1032
(
2009
).
4.
K.
Mori
,
K.
Komurasaki
, and
Y.
Arakawa
,
J. Spacecr. Rocket.
41
,
887
(
2004
).
5.
H.
Katsurayama
,
K.
Komurasaki
,
Y.
Hirooka
,
K.
Mori
, and
Y.
Arakawa
,
J. Propul. Power
24
,
999
(
2008
).
6.
Y. P.
Raizer
,
Laser-Induced Discharge Phenomena (Studies in Soviet Science)
(
Consultant Bureau
,
New York
,
1977
).
7.
K.
Mori
,
K.
Komurasaki
, and
Y.
Arakawa
,
J. Appl. Phys.
92
,
5663
(
2002
).
8.
K.
Mori
,
K.
Komurasaki
, and
Y.
Arakawa
,
J. Appl. Phys.
95
,
5979
(
2004
).
9.
K.
Mori
,
K.
Komurasaki
, and
Y.
Arakawa
,
Appl. Phys. Lett.
88
,
121502
(
2006
).
10.
M.
Ushio
,
K.
Kawamura
,
K.
Komurasaki
, and
Y.
Arakawa
,
Shock Waves
18
(
1
),
35
(
2008
).
11.
E. M.
Bazelyan
and
Y. P.
Raizer
,
Spark Discharge
(
CRC Press
,
Boca Raton, FL
,
1998
).
12.
R. H.
Huddlestone
,
S. L.
Leonard
,
Plasma Diagnostic Techniques
(
Academic
,
New York
,
1965
).
13.
D.
Breitling
,
H.
Schittenhelm
,
P.
Berger
,
F.
Dausinger
, and
H.
Hugel
,
Appl. Phys. A
69
,
S505
(
1999
).
14.
H.
Schittenhelm
,
G.
Callies
,
P.
Berger
, and
H.
Hugel
,
Appl. Surf. Sci.
127
,
922
(
1998
).
15.
H. R.
Griem
,
Plasma Spectroscopy
(
McGraw-Hill
,
New York
,
1964
).
16.
NIST Atomic Spectra Database, http://physics.nist.gov.
17.
T. K.
Bose
,
High Temperature Gas Dynamics
(
Springer
,
Berlin
,
1979
).
18.
M. B.
Zheleznyak
,
A. K.
Mnatsakanyan
, and
S. V.
Sizykh
,
High Temp.
20
,
357
(
1982
).
19.
S.
Kato
,
E.
Takahashi
,
A.
Sasaki
, and
Y.
Kishimoto
,
J. Plasma Fusion Res.
84
,
477
(
2008
) (in Japanese).
20.
F. A.
Williams
,
Combustion Theory
, 2nd ed. (
Westview Press
,
Boulder
,
1994
).
21.
N. H.
Kemp
and
P. F.
Lewis
,
Laser-heated thruster, NASA
Report No. CR-161665,
1980
.
You do not currently have access to this content.