Here we investigate the combined effects of carbon nanotube (CNT) properties such as aspect ratio, curvature, and tunneling length and shear rate on the microstructure and electrical conductivities of CNT/polymer composites using fiber-level simulations. Electrical conductivities are calculated using a resistor network algorithm. Results for percolation thresholds in static systems agree with predictions and experimental measurements. We show that imposed shear flow can decrease the electrical percolation threshold by facilitating the formation of conductive aggregates. In agreement with previous research, we find that lower percolation thresholds are obtained for nanotubes with high aspect ratio. Our results also show that an increase in the curvature of nanotubes can make more agglomeration and reduce the percolation threshold in sheared suspensions.

1.
L.
Chang
,
K.
Friedrich
,
L.
Ye
, and
P.
Toro
,
J. Mater. Sci.
44
,
4003
(
2009
).
3.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Avouris
,
Carbon Nanotubes: Synthesis, Structure, Properties and Applications
(
Springer-Verlag
,
Berlin
,
2001
).
4.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A. D.
Heer
,
Science
297
,
787
(
2002
).
5.
Y.
Yang
and
M.
Gupta
,
Nano Lett.
5
,
2131
(
2005
).
6.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor and Francis
,
London
,
1994
).
7.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
8.
S. S.
Rahatekar
and
M.
Hamm
,
J. Chem. Phys.
123
,
134702
(
2005
).
9.
M.
Grujicic
and
G.
Cao
,
J. Mater. Sci.
39
,
4441
(
2004
).
10.
L.
Berhan
and
A. M.
Sastry
,
Phys. Rev. E
75
,
041121
(
2007
).
11.
C.
Gau
,
C.-Y.
Kuo
, and
H. S.
Ko
,
Nanotechnology
20
,
395705
(
2009
).
12.
N.
Hu
,
Y.
Karube
,
C.
Yan
,
Z.
Masuda
, and
H.
Fukunaga
,
Acta Mater.
56
,
2929
(
2008
).
13.
N.
Hu
,
Z.
Masuda
,
C.
Yan
,
G.
Yamamoto
,
H.
Fukunaga
, and
T.
Hashida
,
Nanotechnology
19
,
215701
(
2008
).
14.
A.
Alloui
,
S. V.
Hoa
, and
M. D.
Pugh
,
Compos. Sci. Technol.
68
,
410
(
2008
).
15.
A.
Mdarhi
,
F.
Carmona
,
C.
Brosseau
, and
P.
Delhaes
,
J. Appl. Phys.
103
,
54303
(
2008
).
16.
F.
Dalmas
,
R.
Dendievel
,
C.
Laurent
,
J.-Y.
Cavaille
, and
C.
Gauthier
,
Acta Mater.
54
,
2923
(
2006
).
17.
E. J.
Tozzi
, Ph.D. thesis,
University of Wisconsin-Madison
,
2008
.
18.
E. J.
Tozzi
, in
Proceedings of the TAPPI Practical Papermaking Conference
, Milwaukee, Wisconsin, 22–26 May 2005 (
TAPPI Press
,
Atlanta, GA
,
2005
).
19.
W. K. A.
Ma
,
F.
Chinesta
,
A.
Ammar
, and
M. R.
Mackley
,
J. Rheol.
52
,
1311
(
2008
).
20.
M.
Yamanoi
,
C.
Leer
,
F. W. J.
van Hattum
,
O. S.
Carneiro
, and
J. M.
Maia
,
J. Colloid Interface Sci.
347
,
183
(
2010
).
21.
S. B.
Lindstroem
and
T.
Uesaka
,
Phys. Fluids
19
,
113307
(
2007
).
22.
S.
Yamamoto
and
T.
Matsuoka
,
Comput. Mater. Sci.
14
,
169
(
1999
).
23.
C. F.
Schmid
and
D. J.
Klingenberg
,
Phys. Rev. Lett.
84
,
290
(
2000
).
24.
C. F.
Schmid
,
L. H.
Switzer
, and
D. J.
Klingenberg
,
J. Rheol.
44
,
781
(
2000
).
25.
L. H.
Switzer
and
D. J.
Klingenberg
,
Int. J. Multiphase Flow
30
,
67
(
2004
).
26.
M.
Yamanoi
and
J.
Maia
, in
The XVth International Congress on Rheology, The Society of Rheology 80th Annual Meeting
(
2008
).
27.
W.
Bauhofer
and
J. Z.
Kovacs
,
Compos. Sci. Technol.
69
,
1486
(
2009
).
28.
I.
Balberg
,
C. H.
Anderson
,
S.
Alexandar
, and
N.
Wagner
,
Phys. Rev. B
30
,
3933
(
1984
).
29.
A.
Celzard
,
E.
Mcrae
,
C.
Deleuze
,
M.
Dufort
,
G.
Furdin
, and
J. F.
Marêché
,
Phys. Rev. B
53
,
6209
(
1996
).
30.
J. K. W.
Sandler
,
J. E.
Kirk
,
I. A.
Kinloch
,
M. S. P.
Schaffer
, and
A. H.
Windle
,
Polymer
44
,
5893
(
2003
).
31.
J. Z.
Kovacs
,
B. S.
Velagala
,
K.
Schulte
, and
W.
Bauhofer
,
Compos. Sci. Technol.
67
,
922
(
2007
).
32.
M.
Keshtkar
,
M.-C.
Heuzey
, and
P. J.
Carreau
,
J. Rheol.
53
,
631
(
2009
).
33.
S.
Pujari
,
S. S.
Rahatekar
,
J. W.
Gilman
,
K. K.
Koziol
,
A. H.
Windle
, and
W. R.
Burghardt
,
J. Chem. Phys.
130
,
214903
(
2009
).
34.
C. A.
Martin
,
J. K. W.
Sandler
,
M. S. P.
Shadler
,
M.-K.
Schwarz
,
W.
Bauhofer
,
K.
Schulte
, and
A. H.
Windle
,
Compos. Sci. Technol.
64
,
2309
(
2004
).
35.
D.
Fry
,
B.
Langhorst
,
H.
Wang
,
M. L.
Becker
,
B. J.
Bauer
,
E. A.
Grulke
, and
E. K.
Hobbie
,
J. Chem. Phys.
124
,
54703
(
2006
).
36.
L. J.
Lantics
,
Y.
Tanabe
,
K.
Matsui
,
Y.
Kaburagi
,
K.
Suda
,
M.
Hoteida
,
M.
Endo
, and
E.
Yasuda
,
Carbon
44
,
3076
(
2006
).
37.
Z.
Fan
and
S. G.
Advani
,
Polymer
46
,
5232
(
2005
).
38.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
39.
T.
Natsuki
,
M.
Endo
, and
T.
Takahashi
,
Physica A
352
,
498
(
2005
).
40.
41.
P.
Sheng
,
E. K.
Sichel
, and
J. I.
Gittleman
,
Phys. Rev. Lett.
40
,
1197
(
1978
).
42.
E. M.
Sevick
,
P. A.
Monson
, and
J. M.
Ottino
,
J. Chem. Phys.
88
,
1198
(
1988
).
43.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
New York
,
1987
).
44.
45.
M.
Zhang
and
J.
Li
,
Mater. Today
12
,
12
(
2009
).
46.
M.
Foygel
,
R. D.
Morris
,
D.
Anez
,
S.
French
, and
V. L.
Sobolev
,
Phys. Rev. B
71
,
104201
(
2005
).
47.
C.
Li
,
E. T.
Thostenson
, and
T.-W.
Chou
,
Compos. Sci. Technol.
68
,
1445
(
2008
).
48.
H. M.
Ma
and
X.-L.
Gao
,
Polymer
49
,
4230
(
2008
).
49.
T. G. M.
van de Ven
and
S. G.
Mason
,
Colloid Polymer Sci.
255
,
468
(
1977
).
50.
W.
Bauhofer
,
S. C.
Schulz
,
A. E.
Eken
,
T.
Skipa
,
D.
Lellinger
,
I.
Alig
,
E. J.
Tozzi
, and
D. J.
Klingenberg
,
Polymer
51
,
5024
(
2010
).
51.
L. H.
Switzer
, Ph.D. thesis,
University of Wisconsin-Madison
,
2002
.
52.
E. K.
Hobbie
and
D. J.
Fry
,
J. Chem. Phys.
126
,
124907
(
2007
).
53.
J. Z.
Kovacs
,
R. E.
Mandjarov
,
T.
Blisnjuk
,
K.
Prehn
,
M.
Sussiek
,
J.
Mueller
,
K.
Schulte
, and
W.
Bauhofer
,
Nanotechnology
20
,
155703
(
2009
).
54.
H. M.
Ma
,
X.-L.
Gao
, and
T.
Benson Tolle
,
Appl. Phys. Lett.
96
,
061910
(
2010
).
55.
Y. B.
Yi
,
L.
Berhan
, and
A. M.
Sastry
,
J. Appl. Phys.
96
,
1318
(
2004
).
56.
C. Y.
Li
and
T.-W.
Chou
,
Appl. Phys. Lett.
90
,
174108
(
2007
).
You do not currently have access to this content.