Detailed theoretical investigations on the electronic and magnetic properties of the ThFe11C2 compound have been performed using both the linear muffin-tin orbital and Korringa–Kohn–Rostocker methods of band structure calculation. The structure of the ThFe11C2 compound has three inequivalent iron sites with different local environment. A strongly enhanced magnetic moment is observed on certain Fe positions, coexisting with much lower magnetic moments on other iron positions of the lattice. Band structure calculations indeed show that the Fe magnetic moments depend strongly on the local environment. The average Fe magnetic moment obtained from these calculations is in good agreement with the experimental average Fe moment obtained from magnetization measurements. The orbital contribution to the magnetic moment is found to be especially large on the Fe 4b position. Comparing calculated hyperfine fields with experimental results, it is found that the calculated and experimental hyperfine fields are correlated. However, similarly to the results reported before for elemental Fe, the magnitude of all calculated Fe hyperfine fields is about 25% smaller. The agreement with the Mössbauer measurements is improved by scaling the core polarization contribution and by estimating the orbital valence d-electrons contribution to the magnetic hyperfine fields using the local spin density approximation + dynamical mean field theory calculated orbital moments.

1.
Y.
Sugita
,
K.
Mitsuoka
,
M.
Komuro
,
H.
Hoshiya
,
Y.
Kozono
, and
M.
Hanazono
,
J. Appl. Phys.
70
,
5977
(
1991
).
2.
J. M. D.
Coey
,
J. Appl. Phys.
76
,
6632
(
1994
).
3.
Y.
Sugita
,
Y.
Takahashi
,
M.
Komuro
,
K.
Mitsuoka
, and
A.
Sakuma
,
J. Appl. Phys.
76
,
6637
(
1994
).
4.
J.
Sakuma
,
J. Appl. Phys.
79
,
5570
(
1996
).
5.
K. H.
Jack
,
J. Alloys Compd.
222
,
160
(
1995
).
6.
T. H.
Jacobs
,
G. L.
Long
,
A. O.
Pringle
,
F.
Grandjean
, and
K. H. J.
Buschow
,
J. Appl. Phys.
70
,
5983
(
1991
).
7.
T. H.
Jacobs
, Ph.D. thesis,
University of Leiden
(
1992
).
8.
G.
Bloch
and
W.
Jeitschko
,
J. Solid State Chem.
70
,
271
(
1987
).
9.
J. L.
Roy
,
J. M.
Moreau
,
C.
Bertrand
, and
M. A.
Freny
,
J. Less-Common Met.
136
,
19
(
1987
).
10.
O.
Isnard
,
J. L.
Soubeyroux
,
D.
Fruchart
,
T. H.
Jacobs
, and
K. H. J.
Buschow
,
J. Phys.: Condens. Matter
4
,
6367
(
1992
).
11.
O.
Isnard
,
V.
Pop
, and
K. H. J.
Buschow
,
J. Magn. Magn. Mater.
256
,
133
(
2003
).
12.
M.
Ron
and
Z.
Malthalone
,
Phys. Rev. B
4
,
774
(
1971
).
13.
G.
LeCaer
,
J. M.
Dubois
, and
J. P.
Senateur
,
J. Solid State Chem.
19
,
19
(
1976
).
14.
D.
Fruchart
,
P.
Chaudouet
,
R.
Fruchart
,
A.
Rouault
, and
J. P.
Senateur
,
J. Solid State Chem.
51
,
246
(
1984
).
15.
O.
Isnard
,
Z.
Arnold
,
J.
Kamarad
, and
K. H. J.
Buschow
,
J. Appl. Phys.
99
,
043909
(
2006
).
16.
O.
Isnard
and
D.
Fruchart
,
J. Alloys Compd.
205
,
1
(
1994
).
17.
J.
Minár
,
L.
Chioncel
,
A.
Perlov
,
H.
Ebert
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
72
,
045125
(
2005
).
18.
U.
vonBarth
and
L.
Hedin
,
J. Phys. C: Solid State Phys.
5
,
1629
(
1972
).
19.
O. K.
Andersen
,
Phys. Rev. B
12
,
3060
(
1975
).
20.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
21.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
22.
P.
Weinberger
,
Electron Scattering Theory for Order and Disordered Matter
(
Oxford University Press
,
Oxford
,
1990
).
23.
A.
Gonis
,
Green Function for Ordered and Disordered Systems
(
North-Holland
,
Amsterdam
,
1992
).
24.
P.
Strange
,
Relativistic Quantum Mechanics
(
Cambridge University Press
,
Cambridge
,
1998
).
25.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
26.
H.
Ebert
,
in Electronic Structure and Physical Properties of Solids
, edited by
H.
Dreyssé
(
Springer
,
Berlin
,
2000
), Vol.
535
,
p
191
.
27.
H.
Ebert
, http://olymp.cup.uni-muenchen.de/ak/ebert/sprkkr, The Munich SPRKKR package, version 3.6 (
2005
).
28.
M.
Battocletti
and
H.
Ebert
,
Phys. Rev. B
64
,
094417
(
2001
).
29.
S.
Chadov
,
J.
Minár
,
M. I.
Katsnelson
,
H.
Ebert
,
D.
Ködderitzsch
, and
A. I.
Lichtenstein
,
Europhys. Lett.
82
,
37001
(
2008
).
30.
O.
Šipr
,
J.
Minár
,
S.
Mankovsky
, and
H.
Ebert
,
Phys. Rev. B
78
,
144403
(
2008
).
31.
M. I.
Katsnelson
and
A. I.
Lichtenstein
,
Eur. Phys. J. B
30
,
9
(
2002
).
32.
L. V.
Pourovskii
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
72
,
115106
(
2005
).
33.
W. B.
Pearson
,
Z. Kristallogr.
152
,
23
(
1980
).
34.
K.
Miura
,
S.
Imanaga
, and
Y.
Hayafuji
,
J. Phys.: Condens. Matter
5
,
9393
(
1993
).
35.
G.
LeCaer
,
B.
Malaman
,
O.
Isnard
,
J. L.
Soubeyroux
,
D.
Frouchart
,
T. H.
Jacobs
, and
K. H. J.
Buschow
,
Hyperfine Interact.
77
,
221
(
1993
).
36.
R.
Coehoorn
,
J. Magn. Magn. Mater.
159
,
55
(
1996
).
37.
P.
Novák
,
J.
Kunes
,
W. E.
Pickett
,
W.
Ku
, and
F. R.
Wagner
,
Phys. Rev. B
67
,
140403
(
2003
).
38.
H.
Ebert
,
P.
Strange
, and
B. L.
Gyorffy
,
J. Phys. F: Met. Phys.
18
,
L135
(
1988
).
39.
H.
Ebert
and
H.
Akai
,
Hyperfine Interact.
78
,
361
(
1993
).
40.
P.
Novák
and
V.
Chlan
,
Phys. Rev. B
81
,
174412
(
2010
).
You do not currently have access to this content.