Analytical expressions of the torque on cuboidal permanent magnets are given. The only hypothesis is that the magnetizations are rigid, uniform, and perpendicularly oriented. The analytical calculation is made by replacing magnetizations by distributions of magnetic charges on the magnet poles. The torque expressions are obtained using the Lorentz force method. The results are valid for any relative magnet position, and the torque can be obtained with respect to any reference point. Although these expressions seem rather complicated, they enable an extremely fast and accurate torque calculation on a permanent magnet in the presence of a magnetic field of another permanent magnet.

1.
J-P.
Yonnet
,
Proceeding of the 5th International Workshop on Rare Earth Cobalt Permanent Magnets and their Applications
,
Roanoke, VA
, June
1981
, pp.
199
216
.
2.
S.
Earnshaw
,
Trans. Cambridge Philos. Soc.
VII
,
97
(
1839
).
3.
J. W.
Jansen
,
C. M. M.
van Lierop
,
E. A.
Lomonova
, and
A. J. A.
Vandenput
,
J. Appl. Phys.
103
,
07E905
1
(
2008
).
4.
G.
Akoun
and
J. P.
Yonnet
,
IEEE Trans. Magn.
20
,
1962
(
1984
).
5.
F.
Bancel
,
J. Appl. Phys.
32
,
2155
(
1999
).
6.
H.
Allag
,
J. P.
Yonnet
,
M.
Fassenet
, and
M. E. H.
Latreche
,
Sensor Lett.
7
,
486
(
2009
).
7.
J. L. G.
Janssen
,
J. J. H.
Paulides
, and
E.
Lomonova
,
Sensor Lett.
7
,
442
(
2009
).
8.
H.
Allag
and
J.-P.
Yonnet
,
IEEE Trans. Magn.
45
,
3969
(
2009
).
9.
J. L. G.
Janssen
,
J. J. H.
Paulides
,
J. C.
Compter
and
E. A.
Lomonova
,
IEEE Trans. Magn.
46
,
1748
(
2010
).
You do not currently have access to this content.