The stability of spin-transfer-driven magnetization precession with respect to spatial nonuniform perturbations is discussed. Quantitative predictions are made for the critical currents and fields at which the precession becomes unstable as well as for the spatially nonuniform magnetization patterns that appear at instability. These predictions are compared with the results of computer simulations of the complete spin-transfer-driven magnetization dynamics.

1.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
3.
G.
Bertotti
,
I. D.
Mayergoyz
, and
C.
Serpico
,
Nonlinear Magnetization Dynamics in Nanosystems
(
Elsevier
,
Oxford
,
2009
).
4.
Y. B.
Bazaliy
,
B. A.
Jones
, and
S. C.
Zhang
,
Phys. Rev.
69
,
094421
(
2004
).
5.
G.
Bertotti
,
R.
Bonin
,
C.
Serpico
,
M.
d’Aquino
, and
I. D.
Mayergoyz
,
J. Appl. Phys.
105
,
07D104
(
2009
).
6.
G.
Bertotti
,
R.
Bonin
,
M.
d’Aquino
,
C.
Serpico
, and
I. D.
Mayergoyz
,
IEEE Magn. Lett.
1
,
3000104
(
2010
).
7.
H.
Suhl
,
J. Phys. Chem. Solids
1
,
209
(
1957
).
8.
K.
Lee
,
A.
Deac
,
O.
Redon
,
J.
Nozières
, and
B.
Dieny
,
Nat. Mater.
3
,
877
(
2004
).
9.
10.
L.
Perko
,
Differential Equations and Dynamical Systems
(
Springer
,
New York
,
1996
).
You do not currently have access to this content.