The magnetic properties, structural properties, and thermal conductivity of FePt films deposited on Ag and Cu heat sink layers designed for use in heat-assisted magnetic recording (HAMR) were investigated. It has been found that FePt films grown on Cu have a well-defined L10-FePt (001) texture while the FePt films grown on Ag appear to be more isotropic. As the thickness of the heat sink layer increases from 15 to 120 nm the coercivity of the FePt films decreases from 1.7 to 1.5 T for Cu and from 1.3 to 1.0 T for Ag. The thermal conductivity measurements, carried out with the “laser-flash” technique, revealed that the overall thermal resistance of the examined structures is dominated by the thermal boundary resistance and the interface effects. The increase in the thickness of Ag and Cu heat sink layers does not lead to the higher effective thermal conductivity of the layered structure in the cross-plane direction. The obtained results are important for optimization of the FePt-based structures for HAMR.

1.
M. A.
Seigler
 et al,
IEEE Trans. Magn.
44
,
119
(
2008
).
2.
M. H.
Kryder
 et al,
Proc. IEEE
96
,
1810
(
2008
).
3.
T. W.
McDaniel
,
W. A.
Challener
, and
K.
Sendur
,
IEEE Trans. Magn.
39
,
1972
(
2003
).
4.
A.
Lyberatos
and
J.
Hohlfeld
,
J. Appl. Phys.
95
,
1949
(
2004
).
5.
F.
Akagi
,
T.
Matsumoto
, and
K.
Nakamura
,
J. Appl. Phys.
101
,
09H501
(
2007
).
6.
B.
Xu
 et al,
J. Magn. Magn. Mater.
320
,
731
(
2008
).
8.
S. J.
Greaves
and
H.
Muraoka
,
J. Appl. Phys.
101
,
09H502
(
2007
).
9.
B. X.
Xu
 et al,
J. Appl. Phys.
103
,
07F525
(
2008
).
10.
D.
Weller
 et al,
IEEE Trans. Magn.
36
,
10
(
2000
).
11.
A.
Zendehnam
 et al,
J. Phys.: Conf. Ser.
61
,
1322
(
2007
).
12.
A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
).
13.
W. L.
Liu
and
A. A.
Balandin
,
J. Appl. Phys.
97
,
073710
(
2005
).
14.
M.
Shamsa
 et al,
Appl. Phys. Lett.
89
,
161921
(
2006
).
15.
S.
Ghosh
 et al,
J. Appl. Phys.
106
,
113507
(
2009
);
R.
Ikkawi
 et al,
J. Nanoelectron. Optoelectron.
3
,
44
(
2008
).
16.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
(
2010
).
17.
W. L.
Liu
 et al,
Appl. Phys. Lett.
89
,
171915
(
2006
).
18.
A. A.
Balandin
 et al,
Appl. Phys. Lett.
93
,
043115
(
2008
).
19.
V.
Goyal
,
D.
Teweldebrhan
, and
A. A.
Balandin
,
Appl. Phys. Lett.
97
,
133117
(
2010
).
20.
V.
Goyal
,
S.
Subrina
,
D. L.
Nika
, and
A. A.
Balandin
,
Appl. Phys. Lett.
97
,
031904
(
2010
).
21.
A. A.
Balandin
 et al,
Nano Lett.
8
,
902
(
2008
);
[PubMed]
S.
Ghosh
 et al,
Appl. Phys. Lett.
92
,
151911
(
2008
).
22.
Q.
Shao
 et al,
J. Nanoelectron. Optoelectron.
4
,
291
(
2009
).
You do not currently have access to this content.