Ionomeric polymer transducer (IPT) is an electroactive polymer that has received considerable attention due to its ability to generate large bending strain (>5%) and moderate stress at low applied voltages (±2 V). Ionic polymer transducers consist of an ionomer, usually Nafion, sandwiched between two electrically conductive electrodes. A novel fabrication technique denoted as the direct assembly process (DAP) enabled controlled electrode architecture in ionic polymer transducers. A DAP built transducer consists of two high surface area electrodes made of electrically conducting particles uniformly distributed in an ionomer matrix sandwiching an ionomer membrane. The purpose of this paper is to investigate and simulate the effect of these high surface area particles on the electro-chemical response of an IPT. Theoretical investigations as well as experimental verifications are performed. The model used consists of a convection-diffusion equation describing the chemical field as well as a Poisson equation describing the electrical field. The two-dimensional model incorporates highly conductive particles randomly distributed in the electrode area. Traditionally, these kinds of electrodes were simulated with boundary conditions representing flat electrodes with a large dielectric permittivity at the polymer boundary. This model enables the design of electrodes with complicated geometrical patterns. In the experimental section, several transducers are fabricated using the DAP process on Nafion 117 membranes. The architecture of the high surface area electrodes in these samples is varied. The concentration of the high surface area RuO2 particles is varied from 30 vol% up to 60 vol% at a fixed thickness of 30 μm, while the overall thickness of the electrode is varied from 10 μm up to 40 μm at a fixed concentration of 45%. The flux and charge accumulation in the materials are measured experimentally and compared to the results of the numerical simulations. Trends of the experimental and numerical investigations are in agreement, while the computational capacity is limiting the ability to add sufficient amount of metal particle to the electrode in order to match the magnitudes.

1.
K.
Oguro
,
Y.
Kawami
, and
H.
Takenaka
,
J. Micromachine Society Soc.
5
,
27
(
1992
).
2.
K.
Sadeghipour
,
R.
Salomon
, and
S.
Neogi
,
Smart Mater. Struct.
1
,
3445
(
1992
).
3.
M.
Shahinpoor
,
Y.
Bar-Cohen
,
J.
Simpson
, and
J.
Smith
,
Smart Mater. Struct.
7
(
6
),
R15
(
1998
).
4.
Electroactive Polymer Actuators as Artificial Muscles
, 2nd ed., edited by
Y.
Bar-Cohen
(
SPIE Press
,
Bellingham
,
2004
).
5.
B. J.
Akle
and
D. J.
Leo
,
Journal of Intelligent Material Systems and Structures
19
(
8
),
905
(
2008
).
6.
B. J.
Akle
,
M. D.
Bennett
, and
D. J.
Leo
,
Sensors and Actuators A: Physical
126
(
1
),
173
(
2006
).
7.
M. D.
Bennett
and
D. J.
Leo
,
Sensors and Actuators A: Physical
115
,
79
(
2004
).
8.
B. J.
Akle
,
S.
Nawshin
, and
D. J.
Leo
,
Smart Mater. Struct.
16
,
S256
(
2007
).
9.
B. J.
Akle
,
M. A.
Hickner
,
D. J.
Leo
, and
J. E.
McGrath
,
J. Mat. Sci.
40
(
14
),
3715
(
2005
).
10.
R.
Kanno
,
S.
Tadokoro
,
T.
Takamori
, and
M.
Hattori
,
Linear approximate dynamic model of icpf actuator
, in
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
219
225
(
1996
).
11.
K. M.
Newbury
and
D. J.
Leo
,
Journal of Intelligent Material Systems and Structures
14
(
6
),
333
(
2003
).
12.
K. M.
Newbury
and
D. J.
Leo
,
Journal of Intelligent Material Systems and Structures
14
(
6
),
343
(
2003
).
13.
S.
Nemat-Nasser
and
Y.
Wu
,
J.Appl. Phys.
93
,
5255
(
2003
).
14.
S.
Nemat-Nasser
,
S.
Zamani
, and
Y.
Tor
,
J. Appl. Phys.
99
,
104902
(
2006
).
15.
S.
Nemat-Nasser
,
J. Appl. Phys.
92
(
5
),
2899
(
2002
).
16.
T.
Wallmersperger
,
B.
Kröplin
, and
R. W.
Gülch
,
“Modelling and Analysis of Chemistry and Electromechanics,”
in
Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential, and Challenges
, 2nd ed. (
SPIE Press
,
Bellingham
,
2004
), Vol.
PM136
, pp.
335
362
.
17.
L. M.
Weiland
and
D. J.
Leo
,
J. Appl. Phys
.
97
,
013541
(
2005
); also selected for publication in the Virtual Journal of Nanoscale Science and Technology.
18.
L. M.
Weiland
and
D. J.
Leo
,
J.Appl. Phys.
97
,
123530
(
2005
).
19.
B. J.
Akle
and
D. J.
Leo
,
Smart Mater Struct.
16
,
1348
(
2007
).
20.
G.
Del Bufalo
,
L.
Placidi
, and
M.
Porfiri
,
Smart Mater Struct.
17
(
4
),
0964
(
2008
).
21.
K.
Asaka
and
K.
Oguro
,
J.Electroanalytical Chem.
480
(
1–2
),
186
(
2000
).
22.
Z.
Chen
,
D. R.
Hedgepeth
, and
X.
Tan
,
Smart Mater. Struct.
18
,
055008
(
2009
).
23.
M.
Aureli
,
W.
Lin
, and
M.
Porfiri
,
J. Appl. Phys.
105
,
104911
(
2009
).
24.
T.
Wallmersperger
,
B. J.
Akle
,
D. J.
Leo
, and
B.
Kröplin
,
Comp. Sci. Tech.
68
(
5
),
1173
(
2008
).
25.
Y.
Toi
and
S.
Kang
,
Comp. Struct.
83
(
31–32
),
2573
(
2005
).
26.
M.
Porfiri
,
Phys. Rev. E
79
,
041503
(
2009
).
27.
T.
Wallmersperger
,
B.
Kröplin
, and
R. W.
Gülch
,
Mech. Mat.
36
(
5–6
),
411
(
2004
).
28.
T.
Wallmersperger
,
D. J.
Leo
, and
C. S.
Kothera
,
J. Appl. Phys.
101
(
2
),
024912
(
2007
).
29.
T. A.
Davis
and
I. S.
Duff
,
SIAM Journal on Matrix Analysis and Applications
18
(
1
),
140
(
1997
).
30.
U. M.
Ascher
and
L. R.
Petzold
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
, 2nd ed. (
SIAM
,
Philadelphia
,
1998
).
31.
T. J. R.
Hughes
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
(
Dover
,
New York
,
2000
).
32.
O. C.
Zienkiewicz
,
R. L.
Taylor
, and
J. Z.
Zhu
,
The Finite Element Method. Its Basis & Fundamentals
, 6th ed. (
Butterworth & Heinemann
,
England
,
2005
).
33.
M.
Porfiri
,
J. Appl. Phys.
104
,
104915
(
2008
).
34.
H.
Tamagawa
,
F.
Nogata
,
T.
Watanabe
,
A.
Abe
,
K.
Yagasaki
, and
J. Y.
Jin
,
J.Mat. Sci.
38
,
1039
(
2003
).
35.
M.
Shahinpoor
and
K. J.
Kim
,
Sensors and Actuators A
96
,
125
(
2002
).
36.
B. J.
Akle
,
M. D.
Bennett
,
D. J.
Leo
,
K. B.
Wiles
, and
J. E.
McGrath
,
J.Mat. Sci.
42
(
16
),
7031
(
2007
).
You do not currently have access to this content.