In an end-Hall source, an ion beam is extracted from a magnetized plasma and accelerated by the plasma electric field without grids. The principle of end-Hall sources is similar to that of Hall effect thrusters (or closed-drift thrusters), but their design is optimized for processing applications (ion beam assisted deposition or substrate cleaning) rather than propulsion. The beam divergence is larger in end-Hall ion sources, and these sources can operate at low ion energies. Although end-Hall sources are commonly used in the surface processing industry, no detailed modeling of these sources is available, and their operation is quite empirical. In this paper, a self-consistent, two-dimensional, quasineutral model of an end-Hall ion source is developed and used in order to improve the understanding of the basic physics of these plasma sources and to quantify the parameters controlling the properties of the extracted ion beam.

1.
H. R.
Kaufman
,
R. S.
Robinson
, and
R. I.
Seddon
,
J. Vac. Sci. Technol. A
5
,
2081
(
1987
).
2.
H. R.
Kaufman
and
J. E.
Harper
, “
Ion assist applications of broad-beam ion sources
,” in
Advances in Thin Film Coatings for Optical Applications
, edited by
J. D. T.
Kruschwitz
and
J. B.
Oliver
(
SPIE
,
Bellingham, WA
,
2004
).
3.
A. I.
Morozov
and
V. V.
Savelyev
, “
Fundamentals of stationary plasma thruster theory
,” in
Reviews of Plasma Physics
, edited by
B. B.
Kadomstev
and
V. D.
Shafranov
(
Kluwer
,
Dordrecht
,
2000
), Vol.
21
;
A. I.
Morozov
,
Plasma Phys. Rep.
29
,
235
(
2003
).
4.
W. A.
Hargus
, Jr.
and
M. A.
Cappelli
,
Appl. Phys. B: Lasers Opt.
B72
,
961
(
2001
).
5.
J. M.
Haas
and
A. D.
Gallimore
,
Phys. Plasmas
8
,
652
(
2001
).
6.
Y.
Raitses
,
A.
Smirnov
,
D.
Staack
, and
N. J.
Fisch
,
Phys. Plasmas
13
,
014502
(
2006
).
7.
S.
Mazouffre
,
V.
Kulaev
, and
J.
Pérez Luna
,
Plasma Sources Sci. Technol.
18
,
034022
(
2009
).
8.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D. M.
Grésillon
,
Phys. Plasmas
16
,
033506
(
2009
).
9.
J. P.
Boeuf
and
L.
Garrigues
,
J. Appl. Phys.
84
,
3541
(
1998
).
10.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J.-P.
Boeuf
,
J. Appl. Phys.
91
,
5592
(
2002
).
11.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J.-P.
Bœuf
,
J. Appl. Phys.
93
,
67
(
2003
).
12.
L.
Garrigues
,
G. J. M.
Hagelaar
,
C.
Boniface
, and
J.-P.
Boeuf
,
J. Appl. Phys.
100
,
123301
(
2006
).
13.
J. C.
Adam
,
J.-P.
Boeuf
,
N.
Dubuit
,
M.
Dudeck
,
L.
Garrigues
,
D.
Gresillon
,
A.
Heron
,
G.
Hagelaar
,
V.
Kulaev
,
N.
Lemoine
,
S.
Mazouffre
,
J.
Perez-Luna
,
V.
Pisarev
, and
S.
Tsikata
,
Plasma Phys. Controlled Fusion
24
,
124041
(
2008
).
14.
E.
Ahedo
,
J. M.
Gallardo
, and
M.
Martínez-Sánchez
,
Phys. Plasmas
10
,
3397
(
2003
).
15.
M. K.
Scharfe
,
N.
Gascon
, and
M. A.
Cappelli
,
Phys. Plasmas
13
,
083505
(
2006
).
16.
J. W.
Koo
and
I. D.
Boyd
,
Phys. Plasmas
13
,
033501
(
2006
).
17.
D.
Meeker
, FEMM Version 3.1; http://femm.berlios.de (
2002
).
18.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
19.
D.
Rapp
and
P.
Englander-Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
20.
H.
Niederwald
and
L.
Mahoney
,
Proc. SPIE 7101
,
71011L
1
(
2009
).
21.
V. V.
Zhurin
, Vacuum Technology & Coating, November (
2008
).
You do not currently have access to this content.