Superconducting coplanar waveguide (SCPW) resonators have a wide range of applications due to the combination of their planar geometry and high quality factors relative to normal metals. However, their performance is sensitive to both the details of their geometry and the materials and processes that are used in their fabrication. In this paper, we study the dependence of SCPW resonator performance on materials and geometry as a function of temperature and excitation power. We measure quality factors greater than 2 × 106 at high excitation power and 6 × 105 at a power comparable to that generated by a single microwave photon circulating in the resonator. We examine the limits to the high excitation power performance of the resonators and find it to be consistent with a model of radiation loss. We further observe that while in all cases the quality factors are degraded as the temperature and power are reduced due to dielectric loss, the size of this effect is dependent on resonator materials and geometry. Finally, we demonstrate that the dielectric loss can be controlled in principle using a separate excitation near the resonance frequencies of the resonator.

1.
R. W.
Simon
,
R. B.
Hammond
,
S. J.
Berkowitz
, and
B. A.
Willemsen
,
Proc. IEEE
92
,
1586
(
2004
).
2.
P. K.
Day
,
H. G.
LeDuc
,
B. A.
Mazin
,
A.
Vayonakis
, and
J.
Zmuidzinas
,
Nature
425
,
817
(
2003
).
3.
M. A.
Castellanos-Beltran
and
K. W.
Lehnert
,
Appl. Phys. Lett.
91
,
083509
(
2007
).
4.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V. E.
Manucharyan
,
L.
Frunzio
,
D. E.
Prober
,
R. J.
Schoelkopf
,
S. M.
Girvin
, and
M. H.
Devoret
,
Nature
465
,
64
(
2010
).
5.
E. A.
Tholén
,
A.
Ergl
,
K.
Stannigel
,
C.
Hutter
, and
D. B.
Haviland
,
Phys. Scr.
T137
,
014019
(
2009
).
6.
J. A.
Schreier
,
A. A.
Houck
,
J.
Koch
,
D. I.
Schuster
,
B. R.
Johnson
,
J. M.
Chow
,
J. M.
Gambetta
,
J.
Majer
,
L.
Frunzio
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. B
77
,
180502
(
2008
).
7.
J.
Majer
,
J. M.
Chow
,
J. M.
Gambetta
,
J.
Koch
,
B. R.
Johnson
,
J. A.
Schreier
,
L.
Frunzio
,
D. I.
Schuster
,
A. A.
Houck
,
A.
Wallraff
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Nature
449
,
443
(
2007
).
8.
R. H.
Koch
,
G. A.
Keefe
,
F. P.
Milliken
,
J. R.
Rozen
,
C. C.
Tsuei
,
J. R.
Kirtley
, and
D. P.
DiVincenzo
,
Phys. Rev. Lett.
96
,
127001
(
2006
).
9.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
J.
Majer
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. Lett.
95
,
060501
(
2005
).
10.
M.
Metcalfe
,
E.
Boaknin
,
V.
Manucharyan
,
R.
Vijay
,
I.
Siddiqi
,
C.
Rigetti
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
,
Phys. Rev. B
76
,
174516
(
2007
).
11.
J. M.
Martinis
,
K. B.
Cooper
,
R.
McDermott
,
M.
Steffen
,
M.
Ansmann
,
K. D.
Osborn
,
K.
Cicak
,
S.
Oh
,
D. P.
Pappas
,
R. W.
Simmonds
, and
C. C.
Yu
,
Phys. Rev. Lett.
95
,
210503
(
2005
).
12.
A. D. O
’Connell
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Hofheinz
,
N.
Katz
,
E.
Lucero
,
C.
McKenney
,
M.
Neeley
,
H.
Wang
,
E. M.
Weig
,
A. N.
Cleland
, and
J. M.
Martinis
,
Appl. Phys. Lett.
92
,
112903
(
2008
).
13.
H.
Wang
,
M.
Hofheinz
,
J.
Wenner
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Lenander
,
E.
Lucero
,
M.
Neeley
,
A. D. O
’Connell
,
D.
Sank
,
M.
Weides
,
A. N.
Cleland
, and
J. M.
Martinis
,
Appl. Phys. Lett.
95
,
233508
(
2009
).
14.
T.
LindstrÄom
,
J. E.
Healey
,
M. S.
Colclough
,
C. M.
Muirhead
, and
A. Y.
Tzalenchuk
,
Phys. Rev. B
80
,
132501
(
2009
).
15.
R.
Barends
,
H. L.
Hortensius
,
T.
Zijlstra
,
J. J. A.
Baselmans
,
S. J. C.
Yates
,
J. R.
Gao
, and
T. M.
Klapwijk
,
Appl. Phys. Lett.
92
,
223502
(
2008
).
16.
R.
Barends
,
N.
Vercruyssen
,
A.
Endo
,
P. J.
de Visser
,
T.
Zijlstra
,
T. M.
Klapwijk
,
P.
Diener
,
S. J. C.
Yates
, and
J. J. A.
Baselmans
,
Appl. Phys. Lett.
97
,
023508
(
2010
).
17.
J.
Gao
,
M.
Daal
,
A.
Vayonakis
,
S.
Kumar
,
J.
Zmuidzinas
,
B.
Sadoulet
,
B. A.
Mazin
,
P. K.
Day
, and
H. G.
Leduc
,
Appl. Phys. Lett.
92
,
152505
(
2008
).
18.
W. A.
Phillips
,
Rep. Prog. Phys.
50
,
1657
(
1987
).
19.
J.
Halbritter
and
A.
Darlinski
,
IEEE Trans. Mag.
MAG–23
,
1381
(
1987
).
20.
C.
Benndorf
,
H.
Seidel
, and
F.
Thieme
,
Surf. Sci.
67
,
469
(
1977
).
21.
R.
Ducros
,
M.
Alnot
,
J. J.
Ehrhardt
,
M.
Housley
,
G.
Piquard
, and
A.
Cassuto
,
Surf. Sci.
94
,
154
(
1980
).
22.
A.
Glaser
,
S.
Surnev
,
F. P.
Netzer
,
N.
Fateh
,
G. A.
Fontalvo
, and
C.
Mitterer
,
Surf. Sci.
601
,
1153
(
2007
).
23.
M.
von Schickfus
and
S.
Hunklinger
,
J. Phys. C
9
,
L439
(
1976
).
24.
M. R.
Vissers
,
J.
Gao
,
D. S.
Wisbey
,
D. A.
Hite
,
C. C.
Tsuei
,
A. D.
Corcoles
,
M.
Steffen
, and
D. P.
Pappas
,
e-print arXiv:1007.5096.
25.
In principle, it is possible that the enhanced Q for TiN arises due to the larger kinetic inductance of TiN as compared with Al and Re due to an increased electric field for a given power. However, from our measurements of the frequency shift of our TiN resonator with respect to that of our Al resonator of identical geometry and substrate (which we conservatively assume has a much lower kinetic inductance fraction), we extract the TiN kinetic inductance fraction of ∼50% and find that the corresponding electric field intensity increases by 3 dB. Because the TiN and Al curves in Fig. 2(b) are flat over more than 10 dB at lowest power, the difference in Q value between the TiN and Al resonators arising from this effect would be negligible.
26.
J.
Gao
,
M.
Daal
,
J. M.
Martinis
,
A.
Vayonakis
,
J.
Zmuidzinas
,
B.
Sadoulet
,
B. A.
Mazin
,
P. K.
Day
, and
H. G.
Leduc
,
Appl. Phys. Lett.
92
,
212504
(
2008
).
27.
Sonnet User’s Guide, Release 12 (Sonnet Software, 100 Elwood Davis Rd., North Syracuse, NY 13212, 2009).
28.
We note that the high-power Q saturates at a higher power for the Al on sapphire device as compared with the Al on silicon device. This could be due to a differing thermal link between each device and its package through its substrate. This difference could cause the number of quasiparticles generated by heat arising from the high power in the resonator to vary between the two devices and thus could lead to a different saturation value. However, we do not have a definitive explanation and further investigation would be required to understand this effect.
29.
C.
Song
,
T. W.
Heitmann
,
M. P.
DeFeo
,
K.
Yu
,
R.
McDermott
,
M.
Neeley
,
J. M.
Martinis
, and
B. L. T.
Plourde
,
Phys. Rev. B
79
,
174512
(
2009
).
30.
B.
Mazin
, “
Microwave Kinetic Inductance Detectors
,”
Ph.D. thesis (California Institute of Technology
,
2004
).
31.
W.
Demtröder
,
Laser Spectroscopy
(
Springer-Verlag
,
Berlin
,
1996
).
32.
A.
Gallitto
,
G.
Bonsignore
,
G.
Giunchi
, and
M.
Li Vigni
,
Euro. Phys. J. B
51
,
537
(
2006
).
33.
A.
Gangopadhyay
,
M.
Dzero
, and
V.
Galitski
,
Phys. Rev. B
82
,
024303
(
2010
).
34.
P.
Doussineau
,
A.
Levelut
, and
T.-T.
Ta
,
J. Physique Lett.
38
,
37
(
1977
).
35.
C.
Laermans
,
W.
Arnold
, and
S.
Hunklinger
,
J. Phys. C
10
,
L161
(
1977
).
You do not currently have access to this content.