The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1−x)(Bi1 − yLay)FeO3xPbTiO3 during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.

1.
R. C.
Turner
,
P. A.
Fuierer
,
R. E.
Newnham
, and
T. R.
Shrout
,
Appl. Acoust.
41
,
299
(
1994
).
2.
W.
Heywang
,
K.
Lubitz
, and
W.
Wersing
,
Piezoelectricity
(
Springer
,
Berlin
,
2008
).
3.
C. A.
Randall
,
A.
Kelnberger
,
G. Y.
Yang
,
R. E.
Eitel
, and
T. R.
Shrout
,
J. Electroceram.
14
,
177
(
2005
).
4.
I.
Kerkamm
,
P.
Hiller
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
77
(
2009
).
5.
M.
Mitrovic
,
G. P.
Carman
, and
F. K.
Straub
,
Int. J. Solids Struct.
38
,
4357
(
2001
).
6.
D.
Damjanovic
,
Curr. Opin. Solid State Mater. Sci.
3
,
469
(
1998
).
7.
T. R.
Shrout
,
R. E.
Eitel
, and
C. A.
Randall
, “
High performance, high temperature perovskite piezoelectric ceramics
,”
Piezoelectric Materials in Devices
, Edited by
N.
Setter
(
EPFL Swiss Federal Institute of Technology
,
Lausanne, Switzerland
,
2002
).
8.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic
,
New York
,
1971
).
9.
J. L.
Jones
,
M.
Hoffman
, and
S. C.
Vogel
,
Physica B.
385–386
,
548
(
2006
).
10.
J. L.
Jones
,
M.
Hoffman
, and
S. C.
Vogel
,
Mech. Mater.
39
,
283
(
2007
).
11.
H.
Cao
and
A. G.
Evans
,
J. Am. Ceram. Soc.
76
,
890
(
1993
).
13.
A. B.
Schäufele
and
K. H.
Härdtl
,
J. Am. Ceram. Soc.
79
(
1996
).
14.
D.
Fang
and
C.
Li
,
J. Mater. Sci.
34
,
4001
(
1999
).
15.
D.
Zhou
and
M.
Kamlah
,
J. Appl. Phys.
96
,
6634
(
2004
).
16.
D.
Zhou
,
M.
Kamlah
, and
D.
Munz
,
J. Eur. Ceram. Soc.
25
,
425
(
2005
).
17.
D.
Zhou
,
M.
Kamlah
, and
D.
Munz
,
J. Am. Ceram. Soc.
88
,
867
(
2005
).
18.
R.
Yimnirun
,
Y.
Laosiritaworn
, and
S.
Wongsaenmai
,
J. Phys. D
39
,
759
(
2006
).
19.
P. M.
Chaplya
and
G. P.
Carman
,
J. Appl. Phys.
90
,
5278
(
2001
).
20.
P. M.
Chaplya
and
G. P.
Carman
,
J. Appl. Phys.
92
,
1504
(
2002
).
21.
F. X.
Li
,
D. N.
Fang
, and
Y. M.
Liu
,
J. Appl. Phys.
100
,
084101
(
2006
).
22.
T.
Granzow
,
T.
Leist
,
A. B.
Kounga
,
E.
Aulbach
, and
J.
Rödel
,
J. Appl. Phys.
91
(
2007
).
23.
E. A.
McLaughlin
,
T.
Liu
, and
C. S.
Lynch
,
Acta Mater.
52
,
3849
(
2004
).
24.
B. S.
Kwak
,
A.
Erbil
,
J. D.
Budai
,
M. F.
Chrisholm
,
L. A.
Boatner
, and
B. J.
Wilkens
,
Phys. Rev. B.
49
,
14865
(
1994
).
25.
A.
Achulhan
and
C. T.
Sun
,
J. Appl. Phys.
97
,
114103
(
2005
).
26.
J. R.
Cheng
and
L. E.
Cross
,
J. Appl. Phys.
94
,
5188
(
2003
).
27.
T.
Leist
,
W.
Jo
,
T.
Comyn
,
A.
Bell
, and
J.
Rödel
,
Jpn. J. Appl. Phys.
48
,
120205
(
2009
).
28.
T. P.
Comyn
,
T.
Stevenson
, and
A. J.
Bell
,
J. Phys. IV
128
,
13
(
2005
).
29.
T.
Leist
,
T.
Granzow
,
W.
Jo
, and
J.
Rödel
,
J. Appl. Phys.
108
,
014103
(
2010
).
30.
S. A.
Fedulov
,
P. B.
Ladyzhinskii
,
I. L.
Pyatigorskaya
, and
Y. N.
Venevtsev
,
Sov. Phys. Solid State
6
,
375
(
1964
).
31.
A. J.
Bell
,
A. X.
Levander
,
S. L.
Turner
, and
T. P.
Comyn
,
Proc. 16th IEEE ISAF
,
Nara-city, Japan
, (
2007
), p.
406
.
32.
A. B.
Kounga Njiwa
,
E.
Aulbach
,
J.
Rödel
,
S. L.
Turner
,
T. P.
Comyn
, and
A. J.
Bell
,
J. Am. Ceram. Soc.
89
,
1761
(
2006
).
33.
J. H.
Zheng
,
S.
Takahashi
,
S.
Yoshikawa
,
K.
Uchino
, and
J. W. C.
deVries
,
J. Am. Ceram. Soc.
79
,
3193
(
1996
).
34.
T.
Leist
,
K. G.
Webber
,
W.
Jo
,
E.
Aulbach
,
J.
Rödel
,
A. D.
Prewitt
,
J. L.
Jones
,
J.
Schmidlin
, and
C. R.
Hubbard
,
Acta Mater.
58
,
5962
(
2010
).
35.
J. R.
Cheng
and
L. E.
Cross
, “
Lanthanum and gallium co-modified BiFeO3-PbTiO3 crystalline solutions: Lead reduced morphotropic phase boundary (MPB) piezoelectric ceramics
”, in
IEEE Ultrasonics Symposium
(
Honolulu, Hawaii, USA
,
2003
), p.
354
.
36.
A. C.
Larson
and
R. B.
Von Dreele
,
“General Structure Analysis System (GSAS),”
Los Alamos National Laboratory Report No. LAUR 86, (
2000
).
37.
B. H.
Toby
,
J. Appl. Crystallogr.
34
(
2001
).
38.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
4614
(
2009
).
39.
M.
Marsilius
,
K. G.
Webber
,
E.
Aulbach
, and
T.
Granzow
,
J. Am. Ceram. Soc.
93
,
2850
(
2010
).
40.
F. X.
Li
and
D. N.
Fang
,
Acta. Mater.
53
,
2665
(
2005
).
41.
H.
Grünbichler
,
J.
Kreith
,
R.
Bermejo
,
P.
Supancic
, and
R.
Danzer
,
J. Eur. Ceram. Soc.
30
,
249
(
2010
).
42.
A. B.
Kounga Njiwa
,
E.
Aulbach
,
T.
Granzow
, and
J.
Rödel
,
Acta. Mater.
55
,
675
(
2007
).
43.
V. V. S. S. S.
Sunder
,
A.
Halliyal
, and
A. M.
Umarji
,
J. Mater. Res.
10
,
1301
(
1995
).
44.
J.
Chen
,
R.
Xing
, and
G. R.
Li
,
Appl. Phys. Lett.
89
,
101914
(
2006
).
45.
M.
Marsilius
(
Technische Universität Darmstadt, Materials Science, NAW
,
Darmstadt
,
2010
).
46.
T.
Mitsui
,
I.
Tatsuzaki
, and
E.
Nakamura
,
An introduction to the physics of ferroelectrics
(
Gordon and Breach Science Publishers
,
New York
,
1976
), Vol.
1
.
47.
D. Y.
Zhou
,
R. Y.
Wang
, and
M.
Kamlah
,
J. Eur. Ceram. Soc.
30
,
2603
(
2010
).
48.
Z. A.
Li
,
H. X.
Yang
,
H. F.
Tian
,
J. Q.
Li
,
J.
Cheng
, and
J.
Chen
,
Appl. Phys. Lett.
90
,
182904
(
2007
).
You do not currently have access to this content.