The effect of surface alignment on the achievement of analog (“V”-shaped) electric field control of director rotation in SmC* liquid crystal devices is investigated experimentally and through numerical modeling. Ferroelectric SmC* liquid crystals are intrinsically analog and thresholdless, i.e. the director can be rotated freely around the tilt cone. Whether or not a SmC* liquid crystal cell exhibits thresholdless switching depends strongly on the influence of the cell’s alignment layers, on the magnitude of the liquid crystal’s spontaneous polarization, and on whether smectic layers adopt a bookshelf or chevron configuration. To study the effect of the surface alignment layers, we have exploited a technique for the vertical (bookshelf) alignment of the smectic layers that does not depend on surface anisotropy. The alignment technique allows an experimental study of the influence of surfaces spanning a wide range of pretilt angles, azimuthal and zenithal anchoring energies. This technique is used to study the effect of surfaces on the threshold behavior of director rotation in SmC* materials under the influence of an electric field. The alignment technique also allowed us to use a high-PS liquid crystal material having an I-A-C phase sequence and reduced layer shrinkage thought to be well suited to thresholdless switching. We show that the alignment layer has a strong effect, and that excellent analog response can be achieved for the case of alignment layers which promote homeotropic director orientation. We further model and discuss the potential effect of a thin layer of nematic at the surface and the possibility of gliding of the easy axis during switching.

1.
A.
Fukuda
, Asia Display’95 (Hamamatsu), S6-1, P61, ITE/SID
1995
.
2.
D.
Engström
,
M. J.
O’Callaghan
,
C.
Walker
, and
M. A.
Handschy
,
Appl. Opt.
,
48
,
1721
(
2009
).
3.
A. G.
Fox
,
PIRE Proceedings
(
1947
), p.
1489
.
4.
N.
Clark
,
D.
Coleman
and
J.
Maclennan
,
Liq. Cryst.
27
,
985
(
2000
).
5.
M. J.
O’Callaghan
,
Phys. Rev. E.
67
,
011710
1
(
2003
).
6.
N.
Vaupotic
and
M.
Copic
,
Phys. Rev. E.
68
,
061705
(
2003
).
7.
M.
Copic
,
J. E.
Maclennan
, and
N. A.
Clark
,
Phys. Rev. E.
65
,
021708
(
2002
).
8.
A.
Hammarquist
,
K.
D’Havé
,
M.
Matuszczyk
,
N. A.
Clark
,
J. E.
Maclennan
, and
P.
Rudquist
,
Phys. Rev. E.
77
,
031707
(
2008
).
9.
L. M.
Blinov
,
E. P.
Pozhidaev
,
F. V.
Podgornov
,
S. A.
Pikin
,
S. P.
Palto
,
A.
Sinha
,
A.
Yasuda
,
A.
Hashimoto
,
W.
Haase
,
Phys. Rev. E.
66
,
021701
(
2002
).
10.
M. J.
O’Callaghan
,
M. D.
Wand
,
C. M.
Walker
, and
M.
Nakata
,
Appl. Phys. Lett.
85
,
6344
(
2004
).
11.
V.
Manjuladevi
,
Y. P.
Panarin
, and
J. K.
Vij
,
Appl. Phys. Lett.
91
,
052911
(
2007
).
12.
Z.
Li
,
O. D.
Lavrentovich
,
Phys. Rev. Lett.
73
,
280
(
1994
).
14.
E.
Lacaze
,
J. P.
Michel
,
M.
Alba
, and
M.
Goldmann
,
Phys. Rev. E.
76
,
041702
(
2007
).
15.
S.
Kralj
and
S.
Žumer
,
Phys. Rev. E
54
,
1610
(
1996
).
16.
Z.
Kutnjak
,
S.
Kralj
,
G.
Lahajnar
, and
S.
Žumer
,
Phys. Rev. E.
70
,
051703
(
2004
).
17.
P.
Vetter
,
Y.
Ohmura
, and
T.
Uchida
,
Jpn. J. Appl. Phys.
32
,
L1239
(
1993
).
18.
M.
Reznikov
,
M.
Handschy
, and
P.
Bos
,
J. Appl. Phys.
104
,
044902
(
2008
).
19.
A.
Morse
and
H.
Gleeson
,
Liq. Cryst.
23
,
531
(
1997
).
20.
S.
Watson
,
L.
Matkin
,
L.
Baylis
,
N.
Bowring
,
H.
Gleeson
,
M.
Hird
, and
J.
Goodby
,
Phys. Rev. E.
65
,
1
(
2002
).
21.
Y.
Takahashi
,
A.
Iida
,
Y.
Takanishi
,
T.
Ogasawara
,
M.
Nakata
,
K.
Ishikawa
, and
H.
Takezoe
,
Phys. Rev. E.
67
,
1
(
2003
).
22.
M. J.
O’Callaghan
,
M.
Wand
,
C.
Walker
,
W.
Thurmesm
, and
K.
More
,
Ferroelectrics
343
,
201
(
2006
).
23.
M. B.
Feller
,
W.
Chen
, and
Y. R.
Shen
,
Phys. Rev. A
43
,
6778
(
1991
). The azimuthal anchoring energy for PI 2555 is the average of values reported for different rubbing strengths in the reference.
24.
M.-P.
Valignat
,
D.
Duca
,
R.
Barberi
,
A.-M.
Cazabat
, and
R.
Bartolino
,
Mol. Cryst. Liq. Cryst.
301
,
151
(
1997
).
25.
I.
Dozov
,
D. N.
Stoenescu
,
S.
Lamarque-Forget
, and
Ph.
Martinot-Lagarde
,
Appl. Phys. Lett.
77
,
4124
(
2000
). To our knowledge, there are no published results of the zenithal anchoring energy measurement for glymo material. However, its tendency to promote ‘slippery’ planar alignment of the liquid crystals allows us to assume that this energy is comparable to the typical values for polyimide surfaces (10−1–1 mJ/m2) .
26.
H.
Mada
and
S.
Saito
,
Jpn. J. Appl. Phys.
38
,
L1118
(
1999
).
27.
G.
Carbone
and
C.
Rosenblatt
,
Phys. Rev. Lett.
94
,
057802
(
2005
).
28.
S.
Palto
,
Crystallography Reports
48
,
124
(
2003
).
29.
For this material, Rd = 0.57 (coefficient describing ‘deVries-ness’ of a smectic liquid crystal that depends on layer spacing and tilt angle), and its ratio of chevron angle to tilt angle is RQ = 0.66. Definitions of these measures can be found in the Ref. 20.
30.
S.
Lagerwall
,
Ferroelectric and Antiferroelectric Liquid Crystals
(
Wiley-VCH
,
1999
).
31.
A.
Rapini
and
M.
Papoular
,
J. Phys. (Paris) Colloq.
30
,
C4
54
(
1969
).
32.
D.
Reznikov
, ‘
Effect Of Surface Alignment Layer on Electro-Optical Properties Of FerroelectricLiquid Crystal Displays
’, Doctoral Dissertation, Kent State University,
2008
.
33.
V.
Vorflusev
,
H.
Kitzerow
, and
V.
Chigrinov
,
Appl. Phys. Lett.
70
,
3359
(
1997
).
You do not currently have access to this content.