A thin dielectric resonator consisting of a dielectric substrate and the thin film deposited upon it is shown to suffice for microwave characterization and dielectric parameter measurement of high-permittivity thin films without electrodes. The TE01δ resonance mode was excited and measured in thin (down to 0.1 mm) rectangular- or disk-shaped low-loss dielectric substrates (D10mm) with permittivity ε10 inserted into a cylindrical shielding cavity or rectangular waveguide. The in-plane dielectric permittivity and losses of alumina, DyScO3, SmScO3, and (LaAlO3)0.29(SrAl1/2Ta1/2O3)0.71 (LSAT) substrates were measured from 10 to 18 GHz. The substrate thickness optimal for characterization of the overlying thin film was determined as a function of the substrate permittivity. The high sensitivity and efficiency of the method, i.e., of a thin dielectric resonator to the dielectric parameters of an overlying film, was demonstrated by characterizing ultrathin strained EuTiO3 films. A 22 nm thick EuTiO3 film grown on a (100) LSAT substrate and strained in biaxial compression by 0.9% exhibited an increase in microwave permittivity at low temperatures consistent with it being an incipient ferroelectric; no strain-induced ferroelectric phase transition was seen. In contrast, a 100 nm thick EuTiO3 film grown on a (110) DyScO3 substrate and strained in biaxial tension by 1% showed two peaks as a function of temperature in microwave permittivity and loss. These peaks correspond to a strain-induced ferroelectric phase transition near 250 K and to domain wall motion.

1.
O. G.
Vendik
,
E. K.
Hollmann
,
A. B.
Kozyrev
, and
A. M.
Prudan
,
J. Superconduc.
12
,
325
(
1999
).
2.
A. K.
Tagantsev
,
V. O.
Sherman
,
K. F.
Astafiev
,
J.
Venkatesh
, and
N.
Setter
,
J. Electroceram.
11
,
5
(
2003
).
3.
Y. M.
Poplavko
and
N. -I.
Cho
,
Semicond. Sci. Technol.
14
,
961
(
1999
).
4.
A. K.
Tagantsev
and
G.
Gerra
,
J. Appl. Phys.
100
,
051607
(
2006
).
5.
K.
Sudheendran
,
D.
Pamu
,
M.
Ghanashyam Krishna
, and
K. C.
James Raju
,
Measurement
43
,
556
(
2010
).
6.
B.
Kim
,
V.
Kazmirenko
,
Y.
Prokopenko
,
Y.
Poplavko
, and
S.
Baik
,
Meas. Sci. Technol.
16
,
1792
(
2005
).
7.
V.
Bovtun
,
S.
Veljko
,
A.
Axelsson
,
S.
Kamba
,
N.
Alford
, and
J.
Petzelt
,
Integr. Ferroelectr.
98
,
53
(
2008
).
8.
J.
Krupka
,
K.
Derzakowski
,
B.
Riddle
, and
J.
Baker-Jarvis
,
Meas. Sci. Technol.
9
,
1751
(
1998
).
9.
J.
Krupka
,
Meas. Sci. Technol.
17
,
R55
(
2006
).
10.
V. G.
Tsykalov
,
V. M.
Pashkov
, and
V. P.
Bovtun
,
Dielectrics and Semiconductors. Republican interdepartmental scientific and technical article collection
,
18
,
7
(
1980
) (in Russian).
12.
B. C.
Chakoumakos
,
D. G.
Schlom
,
M.
Urbanik
, and
J.
Luine
,
J. Appl. Phys.
83
,
1979
(
1998
).
13.
D. G.
Schlom
,
L. -Q.
Chen
,
Ch. -B.
Eom
,
K. M.
Rabe
,
S. K.
Streifer
, and
J. M.
Triscone
,
Annu. Rev. Mater. Res.
37
,
589
(
2007
).
14.
D.
Nuzhnyy
,
J.
Petzelt
,
S.
Kamba
,
P.
Kužel
,
C.
Kadlec
,
V.
Bovtun
,
M.
Kempa
,
J.
Schubert
,
C. M.
Brooks
, and
D. G.
Schlom
,
Appl. Phys. Lett.
95
,
232902
(
2009
).
15.
T.
Katsufuji
and
H.
Takagi
,
Phys. Rev. B
64
,
054415
(
2001
).
16.
C. J.
Fennie
and
K. M.
Rabe
,
Phys. Rev. Lett.
97
,
267602
(
2006
).
17.
J. H.
Lee
,
L.
Fang
,
E.
Vlahos
,
X.
Ke
,
Y. W.
Jung
,
L.
Fitting Kourkoutis
,
J. W.
Kim
,
P. J.
Ryan
,
T.
Heeg
,
M.
Roeckerath
,
V.
Goian
,
M.
Bernhagen
,
R.
Uecker
,
P. C.
Hammel
,
K. M.
Rabe
,
S.
Kamba
,
J.
Schubert
,
J. W.
Freeland
,
D. A.
Muller
,
C. J.
Fennie
,
P.
Schiffer
,
V.
Gopalan
,
E.
Johnston-Halperin
, and
D. G.
Schlom
,
Nature (London)
466
,
954
(
2010
).
18.
V. G.
Tsykalov
,
V. M.
Pashkov
, and
V. P.
Bovtun
,
Dielectrics and Semiconductors
15
,
48
(
1979
) (in Russian).
19.
G.
Arlt
,
U.
Böttger
, and
S.
Witte
,
Ann. Phys.
506
,
578
(
1994
).
20.
N. A.
Pertsev
,
G.
Arlt
, and
A. G.
Zembilgotov
,
Phys. Rev. Lett.
76
,
1364
(
1996
).
You do not currently have access to this content.