In ferroelectric superlattices (SLs), the short-range interactions and intermixing between contacting dissimilar materials can lead to the formation of interfacial nanolayers with physical properties different from those of both constituents. We demonstrate theoretically that such nanolayers can give rise to a sizable dependence of the SL permittivity on the period even in the paraelectric regime. The results of dielectric measurements performed for coherent Ba0.8Sr0.2TiO3–Ba0.4Sr0.6TiO3 SLs are qualitatively consistent with the theoretical predictions. At the same time, the experimental data indicate that other factors also contribute to the variation of the permittivity with the period in ferroelectric superlattices and multilayers.

1.
H.
Tabata
,
H.
Tanaka
, and
T.
Kawai
,
Appl. Phys. Lett.
65
,
1970
(
1994
).
2.
Y.
Lu
,
Appl. Phys. Lett.
85
,
979
(
2004
).
3.
I.
Jaakola
,
J.
Levoska
, and
M.
Tyunina
,
J. Appl. Phys.
102
,
014108
(
2007
).
4.
M.
Tyunina
,
I.
Jaakola
,
J.
Levoska
, and
M.
Plekh
,
Phys. Rev. B
76
,
134107
(
2007
).
5.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
6.
D. R.
Tilley
,
Solid State Commun.
65
,
657
(
1988
).
7.
B. D.
Qu
,
W. L.
Zong
, and
R. H.
Prince
,
Phys. Rev. B
55
,
11218
(
1997
).
8.
G.
Catalan
,
D.
O’Neill
,
R. M.
Bowman
, and
J. M.
Gregg
,
Appl. Phys. Lett.
77
,
3078
(
2000
).
9.
A. L.
Roytburd
,
S.
Zhong
, and
S. P.
Alpay
,
Appl. Phys. Lett.
87
,
092902
(
2005
).
10.
V. A.
Stephanovich
,
I. A.
Luk’yanchuk
, and
M. G.
Karkut
,
Phys. Rev. Lett.
94
,
047601
(
2005
).
11.
F. A.
Urtiev
,
V. G.
Kukhar
, and
N. A.
Pertsev
,
Appl. Phys. Lett.
90
,
252910
(
2007
).
12.
I. B.
Misirlioglu
,
M.
Alexe
,
L.
Pintille
, and
D.
Hesse
,
Appl. Phys. Lett.
91
,
022911
(
2007
).
13.
N. A.
Pertsev
,
P.-E.
Janolin
,
J.-M.
Kiat
, and
Y.
Uesu
,
Phys. Rev. B
81
,
144118
(
2010
).
14.
J. B.
Neaton
and
K. M.
Rabe
,
Appl. Phys. Lett.
82
,
1586
(
2003
).
15.
I. A.
Kornev
and
L.
Bellaiche
,
Phys. Rev. Lett.
91
,
116103
(
2003
).
16.
V. R.
Cooper
,
K.
Johnston
, and
K. M.
Rabe
,
Phys. Rev. B.
76
,
020103
R
(
2007
).
17.
X.
Wu
,
M.
Stengel
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
101
,
087601
(
2008
).
18.
E.
Bousquet
,
M.
Dawber
,
N.
Stucki
,
C.
Lichtensteiger
,
P.
Hermet
,
S.
Gariglio
,
J.-M.
Triscone
, and
P.
Ghosez
,
Nature (London)
452
,
732
(
2008
).
19.
R.
Kretschmer
and
K.
Binder
,
Phys. Rev. B
20
,
1065
(
1979
).
20.
N. A.
Pertsev
,
R.
Dittmann
,
R.
Plonka
, and
R.
Waser
,
J. Appl. Phys.
101
,
074102
(
2007
).
21.
S.
Asanuma
,
Y.
Uesu
,
C.
Malibert
, and
J.-M.
Kiat
,
J. Appl. Phys.
103
,
094106
(
2008
).
22.
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B.
61
,
R825
(
2000
).
23.
A. K.
Tagantsev
,
Ferroelectrics
69
,
321
(
1986
).
24.
The values of θ(x) and C(x) were taken from experimental data obtained for BST ceramics [A. D. Hilton and B. W. Ricketts, J. Phys. D 29, 1321 (1996)].
The constants Q12(x), s11(x), and s12(x) were evaluated via linear interpolation of the material parameters of SrTiO3 (Ref. 22) and BaTiO3 [T. Yamada, J. Appl. Phys. 43, 328 (1972)].
25.
The values of a0(x) were found via linear interpolation of the lattice parameters of BaTiO3 (a0 = 0.4008 nm) and SrTiO3 (a0 = 0.3905 nm). The temperature dependence of um was approximated via the relation um(T) = um(Tr) + (αbα0) (TTr), where αb and α0 are the thermal expansion coefficients (TECs) of the substrate and the paraelectric BST, respectively. The mean TECs were assumed to be αb = 14.8 × 10−6 for MgO, α0 = 10.4 × 10−6 for BaTiO3, and α0 = 11 × 10−6 for SrTiO3.
26.
M.
Tyunina
,
J. Phys.: Condens. Matter
18
,
5725
(
2006
).
27.
M.
Stengel
and
N. A.
Spaldin
,
Nature (London)
443
,
679
(
2006
).
28.
M.
Stengel
,
D.
Vanderbilt
, and
N. A.
Spaldin
,
Nature Mater.
8
,
392
(
2009
).
29.
S. L.
Miller
,
R. D.
Nasby
,
J. R.
Schwank
,
M. S.
Rodgers
, and
P. V.
Dressendorfer
,
J. Appl. Phys.
68
,
6463
(
1990
).
30.
M.
Tyunina
and
J.
Levoska
,
Appl. Phys. Lett.
88
,
262904
(
2006
).
You do not currently have access to this content.