Absolute densities of singlet delta oxygen (SDO) molecules were measured using infrared optical emission spectroscopy in the flowing effluents of two different atmospheric-pressure plasma jets (APPJs): a capacitively coupled radio-frequency-driven jet (rf-APPJ) and a lower frequency kilohertz-driven dielectric barrier discharge jet. The plasma jets were operated in helium, with small admixtures of molecular oxygen (O2 < 2%). High absolute SDO densities of up to 6.2 × 1015 cm−3 were measured at approximately 10 cm downstream. The rf-APPJ seems to be much more efficient in producing SDO. The influence of different parameters, such as gas flows and mixtures and power coupled to the plasmas, on the production of SDO by the two APPJs has been investigated. Despite the considerable differences between the two plasma jets (excitation frequency, electric field direction, inter-electrode distance, plasma propagation), similar dependencies on the oxygen admixture and on the dissipated power were found in both APPJs. However, opposite trends were observed for the gas flow dependence. The results presented in this paper show that the control of the external operating conditions of each APPJ enables the tailoring of the SDO composition of both plasma effluents. This provides scope to tune the plasma jets for desired applications, e.g., in biomedicine.

1.
M.
Laroussi
,
Plasma Processes Polym.
2
,
391
(
2005
).
2.
E.
Stoffels
,
Contrib. Plasma Phys.
47
,
40
(
2007
).
3.
G.
Fridman
,
G.
Friedman
,
A.
Gutsol
,
A. B.
Shekhter
,
V. N.
Vasilets
, and
A.
Fridman
,
Plasma Processes Polym.
5
,
503
(
2008
).
4.
P.
Rajasekaran
,
P.
Mertmann
,
N.
Bibinov
,
D.
Wandke
,
W.
Viol
, and
P.
Awakowicz
,
J. Phys. D: Appl. Phys.
42
,
225201
(
2009
).
5.
M. G.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
J.
van Dijk
, and
J. L.
Zimmermann
,
New J. Phys.
11
,
115012
(
2009
).
6.
M.
Laroussi
,
IEEE Trans. Plasma Sci.
37
,
714
(
2009
).
7.
G. E.
Morfill
,
M. G.
Kong
, and
J. L.
Zimmermann
,
New J. Phys.
11
,
115011
(
2009
).
8.
C.
Jiang
,
M. T.
Chen
,
C.
Schaudinn
,
A.
Gorur
,
P. T.
Vernier
,
J. W.
Costerton
,
D. E.
Jaramillo
,
P. P.
Sedghizadeh
, and
M. A.
Gundersen
,
IEEE Trans. Plasma Sci.
37
,
1190
(
2009
).
9.
M.
Vandamme
,
E.
Robert
,
S.
Pesnel
,
E.
Barbosa
,
S.
Dozias
,
J.
Sobilo
,
S.
Lerondel
,
A.
Le Pape
, and
J. M.
Pouvesle
,
Plasma Processes Polym.
7
,
264
(
2010
).
10.
B.
Lacour
,
V.
Puech
, and
S.
Pasquiers
,
Recent Res. Dev. Appl. Phys.
6
,
149
(
2003
).
11.
U.
Kogelschatz
,
Pure Appl. Chem.
62
,
1667
(
1990
).
12.
C. M. O.
Mahony
,
T.
Gans
,
W. G.
Graham
,
P. D.
Maguire
, and
Z.
Lj. Petrovic
,
Appl. Phys. Lett.
93
,
011501
(
2008
).
13.
H.
Koinuma
,
H.
Ohkubo
,
T.
Hashimoto
,
K.
Inomata
,
T.
Shiraishi
,
A.
Miyanaga
, and
S.
Hayashi
,
Appl. Phys. Lett.
60
,
816
(
1992
).
14.
M.
Teschke
,
J.
Kedzierski
,
E. G.
Finantu-Dinu
,
D.
Korzec
, and
J.
Engemann
,
IEEE Trans. Plasma Sci.
33
,
310
(
2005
).
15.
S.
Forster
,
C.
Mohr
, and
W.
Viol
,
Surf. Coat. Technol.
200
,
827
(
2005
).
16.
J.
Zhang
,
J.
Sun
,
D.
Wang
, and
X.
Wang
,
Thin Solid Films
506
,
404
(
2006
).
17.
J. L.
Walsh
,
J. J.
Shi
, and
M. G.
Kong
,
Appl. Phys. Lett.
88
,
171501
(
2006
).
18.
C.
Cheng
,
L.
Peng
,
X.
Lei
,
Z.
Li-Ye
,
Z.
Ru-Juan
, and
Z.
Wen-Rui
,
Chin. Phys.
15
,
1544
(
2006
).
19.
D. B.
Kim
,
J. K.
Rhee
,
S. Y.
Moon
, and
W.
Choe
,
Appl. Phys. Lett.
89
,
061502
(
2006
).
20.
Y. C.
Hong
and
H. S.
Uhm
,
Appl. Phys. Lett.
89
,
221504
(
2006
).
21.
J.
Waskoenig
and
T.
Gans
,
Appl. Phys. Lett.
96
,
181501
(
2010
).
22.
K.
Niemi
,
S.
Reuter
,
L. M.
Graham
,
J.
Waskoenig
, and
T.
Gans
,
Appl. Phys. Lett.
95
,
151504
(
2009
).
23.
K.
Niemi
,
S.
Reuter
,
L. M.
Graham
,
J.
Waskoenig
,
N.
Knake
,
V.
Schulz-von der Gathen
, and
T.
Gans
,
J. Phys. D: Appl. Phys.
43
,
124006
(
2010
).
24.
E.
Stoffels
,
I. E.
Kieft
,
R. E. J.
Sladek
,
L. J. M.
van den Bedem
,
E. P.
van der Laan
, and
M.
Steinbuch
,
Plasma Sources Sci. Technol.
15
,
S169
(
2006
).
25.
K. H.
Becker
,
A.
Koutsospyros
,
S. M.
Yin
,
C.
Christodoulatos
,
N.
Abramzon
,
J. C.
Joaquin
, and
G.
Brelles-Marino
,
Plasma Phys. Controlled Fusion
47
,
B513
(
2005
).
26.
J. S.
Sousa
,
G.
Bauville
,
B.
Lacour
,
V.
Puech
,
M.
Touzeau
, and
J. L.
Ravanat
,
Appl. Phys. Lett.
97
,
141502
(
2010
).
27.
D.
O’Connell
,
L. J.
Cox
,
W. B.
Hyland
,
S. J.
McMahon
,
S.
Reuter
,
W. G.
Graham
,
T.
Gans
, and
F. J
Currell
,
Appl. Phys. Lett.
98
,
043701
(
2011
).
28.
N. I.
Krinsky
, in
Singlet Oxygen
, edited by
H. H.
Wasserman
and
R. W.
Murray
(
Academic
,
New York
,
1979
).
29.
Singlet Oxygen
, edited by
A. A.
Frimer
(
CRC
,
Boca Raton, FL
,
1985
).
30.
Methods
in Enzymology
,
Singlet Oxygen, UV A and Ozone
, edited by
L.
Packer
and
H.
Sies
(
Academic
,
New York
,
2000
).
31.
C. S.
Foote
,
Photochem. Photobiol.
54
,
659
(
1991
).
32.
H.
Tatsuzawa
,
T.
Maruyama
,
N.
Misawa
,
K.
Fujimori
,
K.
Hori
,
Y.
Sano
,
Y.
Kambayashi
, and
M.
Nakano
,
FEBS Lett.
439
,
329
(
1998
).
33.
J. L.
Ravanat
,
G. R.
Martinez
,
M. G. H.
Medeiros
,
P.
di Mascio
, and
J.
Cadet
,
Tetrahedron
62
,
10709
(
2006
).
34.
K. R.
Weishaupt
,
C. J.
Gomer
, and
T. J.
Dougherty
,
Cancer Res.
36
,
2326
(
1976
).
35.
T. J.
Dougherty
,
C. J.
Gomer
,
B. W.
Henderson
,
G.
Jori
,
D.
Kessel
,
M.
Korbelik
,
J.
Moan
, and
Q.
Peng
,
J. Natl. Cancer Inst.
90
,
889
(
1998
).
36.
F.
Stewart
,
P.
Baas
, and
W.
Star
,
Radiother. Oncol.
48
,
233
(
1998
).
37.
C.
Schweitzer
and
R.
Schmidt
,
Chem. Rev.
103
,
1685
(
2003
).
38.
S.
Lazovic
,
D.
Maletic
,
N.
Puac
,
G.
Malovic
,
A.
Dordevic
, and
Z. L.
Petrovic
, in
Proceedings of the 20th ESCAMPIG
,
Novi Sad, Serbia
, 13–17 July
2010
, p.
2
29
.
39.
J.
Park
,
I.
Henins
,
H. W.
Herrmann
,
G. S.
Selwyn
, and
R. F
Hicks
.,
J. Appl. Phys.
89
,
20
(
2001
).
40.
V.
Schulz-von der Gathen
,
V.
Buck
,
T.
Gans
,
N.
Knake
,
K.
Niemi
,
S.
Reuter
,
L.
Schaper
, and
J.
Winter
,
Contrib. Plasma Phys.
47
,
510
(
2007
).
41.
V.
Schulz-von der Gathen
,
L.
Schaper
,
N.
Knake
,
S.
Reuter
,
K.
Niemi
,
T.
Gans
, and
J.
Winter
,
J. Phys. D: Appl. Phys.
41
,
194004
(
2008
).
42.
A.
Schütze
,
J. Y.
Jeong
,
S. E.
Babayan
,
J.
Park
,
G. S.
Selwyn
, and
R. F.
Hicks
,
IEEE Trans. Plasma Sci.
26
,
1685
(
1998
).
43.
D.
Ellerweg
,
J.
Benedikt
,
A.
von Keudell
,
N.
Knake
, and
V.
Schulz-von der Gathen
,
New J. Phys.
12
,
013021
(
2010
).
44.
B. L.
Sands
,
B. N.
Ganguly
, and
K.
Tachibana
,
Appl. Phys. Lett.
92
,
151503
(
2008
).
45.
D.
O’Connell
, in
Proceedings of the 63rd Gaseous Electronics Conference
,
Paris, France
, 4–8 October
2010
.
46.
A. A.
Ionin
,
I. V.
Kochetov
,
A. P.
Napartovich
, and
N. N.
Yuryshev
,
J. Phys. D: Appl. Phys.
40
,
R25
(
2007
).
47.
S. M.
Newman
,
A. J.
Orr-Ewing
,
D. A.
Newnham
, and
J. J.
Ballard
,
J. Phys. Chem. A
104
,
9467
(
2000
).
48.
G. J. M.
Hagelaar
and
L. C.
Pitchford
, private communication (
2006
).
49.
J. S.
Sousa
,
G.
Bauville
,
B.
Lacour
,
V.
Puech
,
M.
Touzeau
, and
L. C.
Pitchford
,
Appl. Phys. Lett.
93
,
011502
(
2008
).
50.
J. S.
Sousa
,
G.
Bauville
,
B.
Lacour
,
V.
Puech
, and
M.
Touzeau
,
Eur. Phys. J. Appl. Phys.
47
,
22807
(
2009
).
51.
X.
Yang
,
M.
Moravej
,
G. R.
Nowling
,
S. E.
Babayan
,
J.
Panelon
,
J. P.
Chang
, and
R. F.
Hicks
,
Plasma Sources Sci. Technol.
14
,
314
(
2005
).
52.
J.
Waskoenig
,
K.
Niemi
,
N.
Knake
,
L. M.
Graham
,
S.
Reuter
,
V.
Schulz-von der Gathen
, and
T.
Gans
,
Plasma Sources Sci. Technol.
19
,
045018
(
2010
).
53.
J. S.
Sousa
,
V.
Puech
,
Q.
Algwari
,
L. J.
Cox
,
K.
Niemi
,
T.
Gans
, and
D.
O’Connell
, in
Proceedings of the 63rd Gaseous Electronics Conference
,
Paris, France
, 4–8 October
2010
.
54.
B.
Eliasson
,
M.
Hirth
, and
U.
Kogelschatz
,
J. Phys. D: Appl. Phys.
20
,
1421
(
1987
).
55.
J.
Chen
and
J. H.
Davidson
,
Plasma Chem. Plasma Process.
22
,
495
(
2002
).
56.
V. J.
Law
,
S.
Daniels
,
J. L.
Walsh
,
M. G.
Kong
,
L. M.
Graham
, and
T.
Gans
,
Plasma Sources Sci. Technol.
19
,
034008
(
2010
).
57.
D. S.
Stafford
and
M. J.
Kushner
,
J. Appl. Phys.
96
,
2451
(
2004
).
You do not currently have access to this content.