This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.

2.
B. R.
Donald
,
C. G.
Levey
,
C. D.
McGray
,
I.
Paprotny
, and
D.
Russ
,
J. Microelectromech. Syst.
15
,
1
(
2006
).
3.
C.
Pawashe
,
S.
Floyd
, and
M.
Sitti
,
Int. J. Robot. Res.
28
,
1077
(
2009
).
4.
K. B.
Yesin
,
K.
Vollmers
, and
B. J.
Nelson
,
Int. J. Robot. Res.
25
,
527
(
2006
).
5.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
,
Nature
437
,
862
(
2005
).
6.
L.
Zhang
,
J. J.
Abbott
,
L. X.
Dong
,
B. E.
Kratochvil
,
D. J.
Bell
, and
B. J.
Nelson
,
Appl. Phys. Lett.
94
,
064107
(
2009
).
7.
R. K.
Soong
,
G. D.
Bachand
,
H. P.
Neves
,
A. G.
Olkhovets
,
H. G.
Craighead
, and
C. D.
Montemagno
,
Science
290
,
1555
(
2000
).
9.
S. H.
Larsen
,
J.
Adler
,
J. J.
Gargus
, and
R. W.
Hogg
,
Proc. Natl. Acad. Sci. U.S.A.
71
,
1239
(
1974
).
10.
S.
Kojima
and
D. F.
Blair
,
Int. Rev. Cytol.
233
,
93
(
2004
).
11.
L. L.
McCarter
,
J. Mol. Microbiol. Biotechnol.
7
,
18
(
2004
).
12.
E.
Leifson
,
Atlas of Bacterial Flagellation
(
Academic
,
New York
,
1960
).
13.
N.
Darnton
,
L.
Turner
,
K.
Breuer
, and
H. C.
Berg
,
Biophys. J.
86
,
1863
(
2004
).
14.
M.
Kim
and
K.
Breuer
,
J. Fluids Eng.
129
,
319
(
2007
).
15.
E.
Steager
,
C.
Kim
,
J.
Patel
,
S.
Bith
,
C.
Naik
,
L.
Reber
, and
M.
Kim
,
Appl. Phys. Lett.
90
,
263901
(
2007
).
16.
S.
Tung
and
J.
Kim
,
IEEE Int. Conf. Robot. Biomimetics
, (
China
,
2004
) p.
21
25
.
17.
S.
Martel
,
C.
Tremblay
,
S.
Ngakeng
, and
G.
Langlois
,
Appl. Phys. Lett.
89
,
233904
(
2006
).
18.
S.
Martel
,
W.
Andr
,
M.
Mohammadi
, and
Z.
Lu
, “
Towards swarms of communication-enable and intelligent sensotaxis-based bacterial microrobots capable of collective tasks in an aqueous medium
,”
IEEE International Conference on Robotics and Automation
(
IEEE
,
Kobe, Japan
2009
).
19.
B.
Behkam
and
M.
Sitti
,
Appl. Phys. Lett.
90
,
023902
(
2007
).
20.
B.
Behkam
and
M.
Sitti
, “
Bacterial propulsion of chemically patterned micro-cylinders
,”
Proceedings of the IEEE-RAS-EMBC International Conference on Biomedical Robotics and Biomechatronic
(
IEEE
,
Scottsdale, AZ
,
2008
), pp.
753−757
.
21.
B.
Behkam
and
M.
Sitti
,
Appl. Phys. Lett.
93
,
223901
(
2008
).
22.
B.
Behkam
and
M.
Sitti
, “
Characterization of bacterial actuation of micro-objects
,”
Proceedings of IEEE Conference on Robotics and Automation (ICRA)
, (
IEEE
,
Kobe, Japan
,
2009
), pp.
1022
1027
.
23.
A. A.
Julius
,
M. S.
Sakar
,
E.
Steager
,
U. K.
Cheang
,
M.
Kim
,
V.
Kumar
, and
G. J.
Pappas
, “
Harnessing bacterial power for micro scale manipulation and locomotion
,”
IEEE International Conference on Robotics and Automation
(
IEEE
,
Kobe, Japan
,
2009
).
24.
S. M.
Block
,
J. E.
Segall
, and
H. C.
Berg
,
Cell
31
,
215
(
1982
).
25.
H.
Berg
,
E. coli in Motion
(
Springer
,
Berlin
,
2004
).
26.
27.
S. M.
Block
,
D. F.
Flair
, and
H. C.
Berg
,
Nature
338
,
514
(
1989
).
28.
S. M.
Block
,
D. F.
Blair
, and
H. C.
Berg
,
Cytometry
12
,
492
(
1991
).
29.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
, 1st ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
), pp.
120
125
.
30.
I. G.
Currie
,
Fundamental Mechanics of Fluids
, 2nd ed. (
McGraw-Hill
,
New York
,
1993
), p.
260
.
31.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
0481021
(
2007
).
32.
R.
Golestanian
,
Phys. Rev. Lett.
102
,
1883051
(
2009
).
You do not currently have access to this content.