The effects of surface stress on the lattice thermal conductivity are investigated for a silicon nanowire. A phonon dispersion relation is derived based on a continuum approach for a nanowire under surface stress. The phonon Boltzmann equation and the relaxation time are employed to calculate the lattice thermal conductivity. Surface stress, which has a significant influence on the phonon dispersion and thus the Debye temperature, decreases the lattice thermal conductivity. The conductivity varies with changing surface stress, e.g., due to adsorption layers and material coatings. This suggests a phonon engineering approach to tune the conductivity of nanomaterials.

1.
H. S.
Park
,
J. Appl. Phys.
103
,
123504
(
2008
).
2.
X.
Lu
and
J.
Chu
,
J. Appl. Phys.
100
,
014305
(
2006
).
3.
X.
Lu
,
J. H.
Chu
, and
W. Z.
Shen
,
J. Appl. Phys.
93
,
1219
(
2003
).
4.
G. D.
Mahan
and
J. O.
Sofo
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
7436
(
1996
).
5.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Superlattices Microstruct.
38
,
168
(
2005
).
6.
A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
).
7.
A.
Khitun
,
A.
Balandin
, and
K. L.
Wang
,
Superlattices Microstruct.
26
,
181
(
1999
).
8.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Phys. Rev. B
72
,
113311
(
2005
).
9.
E. P.
Pokatilov
,
D. L.
Nika
, and
A. A.
Balandin
,
Superlattices Microstruct.
33
,
155
(
2003
).
10.
G.
Balasubramanian
,
S.
Banerjee
, and
I. K.
Puri
,
J. Appl. Phys.
104
,
064306
(
2008
).
11.
S.
Murad
and
I. K.
Puri
,
Appl. Phys. Lett.
92
,
133105
(
2008
).
12.
S.
Murad
and
I. K.
Puri
,
Appl. Phys. Lett.
95
,
051907
(
2009
).
13.
S.
Murad
and
I. K.
Puri
,
Chem. Phys. Lett.
467
,
110
(
2008
).
14.
A. I.
Hochbaum
,
R. K.
Chen
,
R. D.
Delgado
,
W. J.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P. D.
Yang
,
Nature
451
,
163
(
2008
).
15.
J.
Seyler
and
M. N.
Wybourne
,
J. Phys.: Condens. Matter
2
,
8853
(
1990
).
16.
L. L.
Zhu
and
X. J.
Zheng
,
EPL
88
,
36003
(
2009
).
17.
E.
Chilla
,
A. V.
Osetrov
, and
R.
Koch
,
Phys. Rev. B
63
,
113308
(
2001
).
18.
19.
A.
Rua
,
F. E.
Fernandez
,
M. A.
Hines
, and
N.
Sepulveda
,
J. Appl. Phys.
107
,
053528
(
2010
).
20.
X.
Yi
and
H. L.
Duan
,
J. Mech. Phys. Solids
57
,
1254
(
2009
).
21.
J. E.
Sader
,
J. Appl. Phys.
89
,
2911
(
2001
).
22.
P.
Sharma
,
S.
Ganti
, and
N.
Bhate
,
Appl. Phys. Lett.
82
,
535
(
2003
).
23.
J.
Lagowski
,
H. C.
Gatos
, and
E. S.
Sproles
,
Appl. Phys. Lett.
26
,
493
(
1975
).
24.
G. F.
Wang
, and
X. Q.
Feng
,
Appl. Phys. Lett.
90
,
231004
(
2007
).
25.
M. J.
Lachut
, and
J. E.
Sader
,
Phys. Rev. Lett.
99
,
206102
(
2007
).
26.
K. P. G. M.
Hu
,
J. V.
Goicochea
,
X.
Zhang
, and
D.
Poulikakos
,
Nano Lett.
11
,
618
(
2011
).
27.
Y. C.
Wen
,
C. L.
Hsieh
,
K. H.
Lin
,
H. P.
Chen
,
S. C.
Chin
,
C. L.
Hsiao
,
Y. T.
Lin
,
C. S.
Chang
,
Y. C.
Chang
,
L. W.
Tu
, and
C. K.
Sun
,
Phys. Rev. Lett.
103
,
264301
(
2009
).
28.
X. F.
Wu
, and
Y. A.
Dzenis
,
J. Appl. Phys.
100
,
124318
(
2006
).
29.
F.
Song
,
G. L.
Huang
, and
V. K.
Varadan
,
Acta Mech.
209
,
129
(
2010
).
30.
A. I. A. I.
Beltzer
,
Acoustics of Solids.
(
Springer-Verlag
,
New York
,
1988
).
31.
J.
Zou
, and
A.
Balandin
,
J. Appl. Phys.
89
,
2932
(
2001
).
32.
H. I.
Liu
,
D. K.
Biegelsen
,
N. M.
Johnson
,
F. A.
Ponce
, and
R. F. W.
Pease
,
J.Vac. Sci. Technol. B
11
,
2532
(
1993
).
33.
T.
Kizuka
,
Y.
Takatani
,
K.
Asaka
, and
R.
Yoshizaki
,
Phys. Rev. B
72
,
6
(
2005
).
34.
D.
Lacroix
,
I.
Traore
,
S.
Fumeron
, and
G.
Jeandel
,
Eur. Phys. J. B
67
,
15
(
2009
).
35.
Y.
Xiao
,
X. H.
Yan
,
J. X.
Cao
, and
J. W.
Ding
,
J. Phys.: Condens. Matter
15
,
L341
(
2003
).
36.
D. Y.
Li
,
Y. Y.
Wu
,
P.
Kim
,
L.
Shi
,
P. D.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
(
2003
).
37.
M. J.
Huang
,
W. Y.
Chong
, and
T. M.
Chang
,
J. Appl. Phys.
99
,
043506
(
2006
).
38.
D.
Donadio
, and
G.
Galli
,
Nano Lett.
10
,
847
(
2010
).
You do not currently have access to this content.