Rayleigh’s formalism is generalized for the evaluation of the effective material properties in multicoated circular fibrous multiferroic composites. The derived solution is applied to the special three-phase composite in which coated fibers are embedded in a matrix. For composites made of piezoelectric (BaTiO3) and piezomagnetic (CoFe2O4 or Terfenol-D) phases, we find that the magnetoelectric effect in the composite made of CoFe2O4 coated BaTiO3 in matrix Terfenol-D is five times larger than that in the composite made of BaTiO3 coated Terfenol-D in matrix CoFe2O4. Furthermore, in each case, with appropriate coating to the circular fiber, the magnetoelectric effect in the coated composites can be enhanced by more than one order of magnitude as compared to the corresponding noncoating composite.

1.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
(
2006
).
2.
C.-W.
Nan
,
M. I.
Bichurin
,
S.
Dong
,
D.
Vieland
, and
G.
Srinivasan
,
J. Appl. Phys.
103
,
031101
(
2008
).
3.
T. R.
McGuire
,
E. J.
Scott
, and
F. H.
Grannis
,
Phys. Rev.
102
,
1000
(
1956
).
4.
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
(
2005
).
5.
G.
Srinivasan
,
Annu. Rev. Mater. Res.
40
,
153
(
2010
).
6.
7.
J. H.
Huang
, and
W.-S.
Kuo
,
J. Appl. Phys.
81
,
378
(
1997
).
8.
Y.
Benveniste
,
Phys. Rev. B
51
,
16424
(
1995
).
9.
M.
Milgrom
, and
S.
Shtrikman
,
Phys. Rev. A
40
,
1568
(
1989
).
10.
G.
Harshe
,
J. P.
Dougherty
, and
R. E.
Newnham
,
Int. J. Appl. Electromagn. Mater.
4
,
161
(
1993
).
11.
J.
Aboudi
,
Smart Mater. Struct.
10
,
867
(
2001
).
12.
J. Y.
Li
and
M. L.
Dunn
,
J. Intell. Mater. Syst. Struct.
9
,
404
(
1998
).
13.
J. Y.
Li
and
M. L.
Dunn
,
Philos. Mag. A
77
,
1341
(
1998
).
14.
15.
16.
T. L.
Wu
and
J. H.
Huang
,
Int. J. Solids Struct.
37
,
2981
(
2000
).
17.
S.
Srinivas
,
J. Y.
Li
,
Y. C.
Zhou
, and
S. K.
Soh
,
J. Appl. Phys.
99
,
043905
(
2006
).
18.
M. I.
Bichurin
,
V. M.
Petrov
, and
G.
Srinivasan
,
Phys. Rev. B
68
,
054402
(
2003
).
19.
M. I.
Bichurin
,
V. M.
Petrov
,
S. V.
Averkin
, and
E.
Liverts
,
J. Appl. Phys.
107
,
053904
(
2010
).
20.
M. I.
Bichurin
,
V. M.
Petrov
,
S. V.
Averkin
, and
E.
Liverts
,
J. Appl. Phys.
107
,
053905
(
2010
).
21.
C.-W.
Nan
,
L.
Lu
,
N.
Cai
,
J.
Zhai
,
Y.
Ye
,
Y. H.
Lin
,
L. J.
Dong
, and
C. X.
Xiong
,
Appl. Phys. Lett.
81
,
3831
(
2002
).
22.
C.-W.
Nan
,
N.
Cai
,
L.
Liu
,
J.
Zhai
,
Y.
Ye
, and
Y.
Lin
,
J. Appl. Phys.
94
,
5930
(
2003
).
23.
A.
Gupta
and
R.
Chatterjee
,
J. Appl. Phys.
106
,
024110
(
2009
).
24.
K. H.
Chau
,
Y. W.
Wong
, and
F. G.
Shin
,
Appl. Phys. Lett.
94
,
202902
(
2009
).
25.
P. A.
Jadhav
,
M. B.
Shelar
, and
B. K.
Chougule
,
J. Alloy Compd.
479
,
385
(
2009
).
27.
W. Q.
Chen
and
K. Y.
Lee
,
Int. J. Solids Struct.
40
,
5689
(
2003
).
28.
V. M.
Petrov
and
G.
Srinivasan
,
Phys. Rev. B
78
,
184421
(
2008
).
29.
V. M.
Petrov
,
G.
Srinivasan
, and
T. A.
Galkina
,
J. Appl. Phys.
104
,
113910
(
2008
).
30.
E.
Pan
and
F.
Han
,
Int. J. Eng. Sci.
43
,
321
(
2005
).
31.
X.
Wang
,
E.
Pan
,
J. D.
Albrecht
, and
W. J.
Feng
,
Compos. Struct.
87
,
206
(
2009
).
32.
X.
Wang
and
E.
Pan
,
Phys. Rev. B
76
,
214107
(
2007
).
33.
E.
Pan
,
X.
Wang
, and
R.
Wang
,
Appl. Phys. Lett.
95
,
181904
(
2009
).
34.
H. M.
Wang
,
E.
Pan
, and
W. Q.
Chen
,
J. Appl. Phys.
107
,
093514
(
2010
).
35.
E. T.
Thostenson
,
W. Z.
Li
,
D. Z.
Wang
, and
Z. F.
Ren
,
J. Appl. Phys.
91
,
6034
(
2002
).
36.
H.
Hatta
and
M.
Taya
,
J. Appl. Phys.
59
,
1851
(
1986
).
37.
N. A.
Nicrovici
,
R. C.
McPhedran
, and
G. W.
Milton
,
Proc. R. Soc. London, Ser. A
442
,
599
(
1993
).
38.
L.
Rayleigh
,
Philos. Mag.
34
,
481
(
1892
).
39.
H.-Y.
Kuo
and
K.
Bhattacharya
,
Mech. Mater.
(under revision).
40.
C. L.
Berman
and
L.
Greengard
,
J. Math. Phys.
35
,
6036
(
1994
).
42.
D. R.
Perrins
,
D. R.
McKenzie
, and
R. C.
McPhedran
,
Proc. R. Soc. London, Ser. A
369
,
207
(
1979
).
43.
Y. X.
Liu
,
J. G.
Wan
,
J.-M.
Liu
, and
C. W.
Wen
,
J. Appl. Phys.
94
,
5111
(
2003
).
44.
G.
Liu
,
C.-W.
Nan
,
N.
Cai
, and
Y.
Lin
,
J. Appl. Phys.
95
,
2660
(
2004
).
You do not currently have access to this content.