Based on the Kronig–Penney model, the changing tendency of the bandgap or of a particular level with the volume deformation in crystalline materials has been derived. On the basis of this changing tendency, the zero-phonon charge transfer (CT) energy is deduced to be decreased when the size of Y2O3:Eu3+ phosphor decreases into the nanoscale. In addition, the rigidity decrease of the lattice environment in Y2O3:Eu3+ nanophosphor leads to the enlargement of the CT state coordinate offset of the optical centers; this means that an optical center would reach a higher vibration level in CT excitation. The increasing magnitude of the vibration energy is smaller than the decreasing magnitude of the zero-phonon CT energy when the size of the Y2O3:Eu3+ phosphor decreases into the nanoscale. As a result, the CT energy is decreased, and the CT excitation spectrum shifts to a lower energy.

1.
l.
Li
and
S. Y.
Zhang
,
J. Phys. Chem. B
110
,
21438
(
2006
).
2.
P.
Maestro
and
D.
Huguenin
,
J. Alloys Compd.
225
,
520
(
1995
).
3.
J.
Dhanaraj
,
M.
Geethalakshmi
,
R.
Jagannathan
, and
T. R. N.
Kutty
,
Chem. Phys. Lett.
387
,
23
(
2004
).
4.
Z. M.
Qi
,
M.
Liu
,
Y. H.
Chen
,
G. B.
Zhang
,
M.
Xu
,
C. S.
Shi
,
W. P.
Zhang
,
M.
Yin
, and
Y. N.
Xie
,
J. Phys. Chem. C
111
,
1945
(
2007
).
5.
A. A.
Bo
and
A.
Meijerink
,
J. Phys. Chem. B
111
,
10197
(
2001
).
6.
S.
Miura
,
T.
Nakamura
,
M. J.
Fu
,
M.
Inui
, and
S.
Hayashi
,
Phys. Rev. B
73
,
245333
(
2006
).
7.
D. K.
Williams
,
H.
Yuan
, and
B. M.
Tissue
,
J. Lumin.
297
,
83
(
1999
).
8.
K.
Riwotzki
and
M.
Haase
,
J. Phys. Chem. B
105
,
12709
(
2001
).
9.
W. W.
Zhang
,
X.
Mei
,
W. P.
Zhang
,
Y.
Min
,
Z. M.
Qi
,
S. D.
Xia
, and
C.
Garapon
,
Chem. Phys. Lett.
376
,
318
(
2003
).
10.
X.
Mei
,
W. P.
Zhang
,
D.
Ning
,
T.
Ye
, and
Y.
Min
,
J. Solid State Chem.
178
,
477
(
2005
).
11.
R.
Schmechel
,
M.
Kennedy
, and
H. V.
Seggern
,
J. Appl. Phys.
89
,
1679
(
2001
).
12.
J. Y.
Sun
,
H. Y.
Du
, and
W. X.
Hu
,
Solid Luminescent Materials
(
Chemical Industry
,
Beijing
,
2003
), Chap. 8.
13.
T.
Ye
,
G.
Zhao
,
W.
Zhang
, and
S.
Xia
,
Mater. Res. Bull.
32
,
501
(
1997
).
14.
Z. M.
Qi
,
C. S.
Shi
,
W. W.
Zhang
,
W. P.
Zhang
, and
T. D.
Hu
,
Appl. Phys. Lett.
81
,
2857
(
2002
).
15.
H. E.
Hoefdraad
,
J. Inorg. Nucl. Chem.
37
,
1917
(
1975
).
17.
L.
Li
,
S. H.
Zhou
, and
S. Y.
Zhang
,
J. Phys. Chem. C
111
,
3205
(
2007
).
18.
C. Y.
Shang
,
X. H.
Shang
,
Y. Q.
Qu
, and
M. C.
Li
,
J. Appl. Phys.
108
,
094328
(
2010
).
19.
J. X.
Fang
and
L.
Dong
,
Solid State Physics
(
Shanghai Scientific and Technical Publishers
,
Shanghai
,
1981
), Chap. 5.
20.
E. K.
Liu
,
B. S.
Zhu
, and
J. S.
Luo
,
Semiconductor Physics
(
National Defense Industry
,
Beijing
,
1994
), Chap. 13.
21.
E. K.
Liu
,
B. S.
Zhu
, and
J. S.
Luo
,
Semiconductor Physics
(
National Defense Industry
,
Beijing
,
1994
), Chap. 4.
22.
Y. N.
Xu
,
Z. Q.
Gu
, and
W. Y.
Ching
,
Phys. Rev. B
56
,
14993
(
1997
).
23.
J. Y.
Sun
,
H. Y.
Du
, and
W. X.
Hu
,
Solid Luminescent Materials
(
Chemical Industry
,
Beijing
,
2003
), Chap. 3.
24.
P.
Dorenbos
,
J. Phys.: Condens. Matter
15
,
8417
(
2003
).
25.
J. Y.
Sun
,
H. Y.
Du
, and
W. X.
Hu
,
Solid Luminescent Materials
(
Chemical Industry
,
Beijing
,
2003
), Chap. 5.
26.
J. Y.
Sun
,
H. Y.
Du
, and
W. X.
Hu
,
Solid Luminescent Materials
(
Chemical Industry
,
Beijing
,
2003
), Chap. 14.
27.
Y. L.
Soo
,
S. W.
Huang
,
Z. H.
Ming
,
Y. H.
Kao
,
G. C.
Smith
,
E.
Goldburt
,
R.
Hodel
,
B.
Kulkami
,
J. V. D.
Veliadis
, and
R. N.
Bhargava
,
J. Appl. Phys.
83
,
5404
(
1998
).
You do not currently have access to this content.