InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

1.
E. F.
Schubert
and
J. K.
Kim
,
Science
308
,
1274
(
2005
).
2.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
W.
Shan
,
J. W.
Ager
,
E. E.
Haller
,
H.
Lu
,
W. J.
Schaff
,
W. K.
Metzger
, and
S.
Kurtz
,
J. Appl. Phys.
94
,
6477
(
2003
).
3.
P.
Kung
and
M.
Razeghi
,
Opto-Electron. Rev.
8
,
201
(
2000
).
4.
S.
Nakamura
,
S.
Pearton
, and
G.
Fasol
,
The Blue Laser Diode: The Complete Story
(
Springer-Verlag
,
Heidelberg
,
2000
).
5.
T.
Kuykendall
,
P.
Ulrich
,
S.
Aloni
, and
P.
Yang
,
Nature Mater.
6
,
951
(
2007
).
6.
H.
Morkoç
,
Handbook of Nitride Semiconductors and Devices
(
Wiley-VHC Verlag
,
Weinheim
,
2008
), Vol.
1–3
.
7.
E.
Calleja
,
M. A.
Sánchez-Garciá
,
F. J.
Sánchez
,
F.
Calle
,
F. B.
Naranjo
,
E.
Muñoz
,
U.
Jahn
, and
K.
Ploog
,
Phys. Rev. B
62
,
16826
(
2000
).
8.
R.
Meijers
,
T.
Richter
,
R.
Calarco
,
T.
Stoica
,
H. P.
Bochem
,
M.
Marso
, and
H.
Lüth
,
J. Cryst. Growth
289
,
381
(
2006
).
9.
N.
Thillosen
,
K.
Sebald
,
H.
Hardtdegen
,
R.
Meijers
,
R.
Calarco
,
S.
Montanari
,
N.
Kaluza
,
J.
Gutowski
, and
H.
Luth
,
Nano Lett.
6
,
704
(
2006
).
10.
L.
Robins
,
K. A.
Bertness
,
J. M.
Barker
,
N. A.
Sanford
, and
J. B.
Schlager
,
J. Appl. Phys.
101
,
113505
(
2007
).
11.
L.
Cerutti
,
J.
Ristic
,
S.
Fernandez-Garrido
,
E.
Calleja
,
A.
Trampert
,
K. H.
Ploog
,
S.
Lazic
, and
J. M.
Calleja
,
Appl. Phys. Lett.
88
,
213114
(
2006
).
12.
J.
Renard
,
R.
Songmuang
,
C.
Bougerol
,
B.
Daudin
, and
B.
Gayral
,
Nano Lett.
8
,
2092
(
2008
).
13.
R.
Calarco
,
R. J.
Meijers
,
R. K.
Debnath
,
T.
Stoica
,
E.
Sutter
, and
H.
Lüth
,
Nano Lett.
7
,
2248
(
2007
).
14.
T.
Stoica
,
E.
Sutter
,
R.
Meijers
,
R. K.
Debnath
,
R.
Calarco
, and
H.
Lüth
,
Small
4
,
751
(
2008
).
15.
K.
Goodman
,
K.
Wang
,
X.
Luo
,
J.
Simon
,
T.
Kosel
, and
D.
Jena
,
MRS Symposia Proceedings
No. 1080 (
Materials Research Society
,
Pittsburgh
,
2008
), p.
1080
O08
.
16.
R. K.
Debnath
,
R.
Meijers
,
T.
Richter
,
T.
Stoica
,
R.
Calarco
, and
H.
Lüth
,
Appl. Phys. Lett.
90
,
123117
(
2007
).
17.
R.
Calarco
and
M.
Marso
,
Appl. Phys. A: Mater. Sci. Process.
87
,
499
(
2007
).
18.
T.
Stoica
,
R. J.
Meijers
,
R.
Calarco
,
T.
Richter
,
E.
Sutter
, and
H.
Lüth
,
Nano Lett.
6
,
1541
(
2006
).
19.
T.
Stoica
,
R. J.
Meijers
,
R.
Calarco
,
T.
Richter
, and
H.
Lüth
,
J. Cryst. Growth
290
,
241
(
2006
).
20.
L.
Geelhaar
,
C.
Chèze
,
W. M.
Weber
,
R.
Averbeck
,
H.
Riechert
,
T.
Kehagias
,
P.
Komninou
,
G. P.
Dimitrakopulos
, and
T.
Karakostas
,
Appl. Phys. Lett.
91
,
093113
(
2007
).
21.
A. P.
Vajpeyi
,
A. O.
Ajagunna
,
K.
Tsagaraki
,
M.
Androulidaki
, and
A.
Georgakilas
,
Nanotechnology
20
,
325605
(
2009
).
22.
K. M.
Wu
,
Y.
Pan
, and
C.
Liu
,
Appl. Surf. Sci.
255
,
6705
(
2009
).
23.
K.
Kishino
,
A.
Kikuchi
,
H.
Sekiguchi
, and
S.
Ishizawa
,
Proc. SPIE
6473
,
64730T
(
2007
).
24.
J.
Ristić
,
E.
Calleja
,
A.
Trampert
,
S.
Fernandez-Garrido
,
C.
Rivera
,
U.
Jahn
, and
K. H.
Ploog
,
Phys. Rev. Lett.
94
,
146102
(
2005
).
25.
J.
Renard
,
R.
Songmuang
,
G.
Tourbot
,
C.
Bougerol
,
B.
Daudin
, and
B.
Gayral
,
Phys. Rev. B
80
,
121305
(
2009
).
26.
Y.
Kawakami
,
S.
Suzuki
,
A.
Kaneta
,
M.
Funato
,
A.
Kikuchi
, and
K.
Kishino
,
Appl. Phys. Lett.
89
,
163124
(
2006
).
27.
R.
Armitage
and
K.
Tsubaki
,
Nanotechnology
21
,
195202
(
2010
).
28.
A. L.
Bavencove
,
G.
Tourbot
,
E.
Pougeoise
,
J.
Garcia
,
P.
Gilet
,
F.
Levy
,
B.
Andre
,
G.
Feuillet
,
B.
Gayral
,
B.
Daudin
, and
L. S.
Dang
,
Phys. Status Solidi A
207
,
1425
1427
(
2010
).
29.
H. -W.
Lin
,
Y. -J.
Lu
,
H. -Y.
Chen
,
H. -M.
Lee
and
S.
Gwo
,
Appl. Phys. Lett.
97
,
073101
(
2010
).
30.
Y. -L.
Chang
,
J. L.
Wang
,
F.
Li
, and
Z.
Mi
,
Appl. Phys. Lett.
96
,
013106
(
2010
).
31.
Y. S.
Park
,
M. J.
Holmes
,
T. W.
Kang
, and
R. A.
Taylor
,
Nanotechnology
21
,
115401
(
2010
).
32.
H.
Sekiguchi
,
K.
Kishino
, and
A.
Kikuchi
,
Phys. Status Solidi C
7
,
2374
(
2010
).
33.
W.
Guo
,
M.
Zhang
,
A.
Banerjee
, and
P.
Bhattacharya
,
Nano Lett.
10
,
3355
(
2010
).
34.
K.
Kishino
,
S.
Hiroto
, and
K.
Akihiko
,
J. Cryst. Growth
311
,
2063
(
2009
).
35.
C. C.
Hong
,
H.
Ahn
,
C. Y.
Wu
, and
S.
Gwo
,
Opt. Express
17
,
17227
(
2009
).
36.
L.
Polenta
,
A.
Cavallini
,
M.
Rossi
,
R.
Calarco
,
M.
Marso
,
T.
Stoica
,
R.
Meijers
,
T.
Richter
, and
H.
Lüth
,
ACS Nano
2
,
287
(
2008
).
37.
A.
Cavallini
,
L.
Polenta
,
M.
Rossi
,
T.
Richter
,
M.
Marso
,
R.
Meijers
,
R.
Calarco
, and
H.
Lüth
,
Nano Lett.
6
,
1548
(
2006
).
38.
S.
Hernández
,
R.
Cuscó
,
D.
Pastor
,
L.
Artús
,
K. P.
O’Donnell
,
R. W.
Martin
,
I. M.
Watson
,
Y.
Nanishi
, and
E.
Calleja
,
J. Appl. Phys.
98
,
013511
(
2005
).
39.
H.
Harima
,
J. Phys.: Condens. Matter
14
,
R967
(
2002
).
40.
E.
Alarcón-Lladó
,
R.
Cuscó
,
L.
Artús
,
J.
Jiménez
,
B.
Wang
, and
M.
Callahan
,
J. Phys.: Condens. Matter
20
,
445211
(
2008
).
41.
See supplementary material at 10.http://dx.doi.org/10.1063/1.3530634 for the interface between the initially grown GaN NW and the subsequent InGaN growth.

Supplementary Material

You do not currently have access to this content.