We applied phase-field approach to investigate both ferroelectric and antiferrodistortive transitions in (001) SrTiO3 epitaxial thin films that are strained biaxially. A domain/phase stability diagram of “misfit strain-temperature” was constructed for equibiaxially strained (001) SrTiO3 thin films, which exhibits significant differences from previous diagrams obtained using thermodynamic analysis of a single domain. For unequibiaxially strained (001) SrTiO3 thin films, “misfit strain-misfit strain” domain stability diagrams at several representative temperatures were obtained. The predicted phase transitions, domain stabilities, and domain structures in three different SrTiO3 thin films under either equibiaxial or unequibiaxial strains agree well with experimental observations.

1.
K. A.
Müller
and
H.
Burkard
,
Phys. Rev. B
19
,
3593
(
1979
).
2.
H.
Unoki
and
T.
Sakudo
,
J. Phys. Soc. Jpn.
23
,
546
(
1967
).
3.
P. A.
Fleury
and
J. M.
Worlock
,
Phys. Rev.
174
,
613
(
1968
).
4.
G.
Shirane
and
Y.
Yamada
,
Phys. Rev.
177
,
858
(
1969
).
5.
H.
Thomas
and
K. A.
Müller
,
Phys. Rev. Lett.
21
,
1256
(
1968
).
6.
T.
Mitsui
and
W. B.
Westphal
,
Phys. Rev.
124
,
1354
(
1961
).
7.
M.
Itoh
,
R.
Wang
,
Y.
Inaguma
,
T.
Yamaguchi
,
Y. -J.
Shan
, and
T.
Nakamura
,
Phys. Rev. Lett.
82
,
3540
(
1999
).
8.
W. J.
Burke
and
R. J.
Pressley
,
Solid State Commun.
9
,
191
(
1971
).
9.
H.
Uwe
and
T.
Sakudo
,
Phys. Rev. B
13
,
271
(
1976
).
10.
M. P.
Warusawithana
,
C.
Cen
,
C. R.
Sleasman
,
J. C.
Woicik
,
Y.
Li
,
L. F.
Kourkoutis
,
J. A.
Klug
,
H.
Li
,
P.
Ryan
,
L. P.
Wang
,
M.
Bedzyk
,
D. A.
Muller
,
L. Q.
Chen
,
J.
Levy
, and
D. G.
Schlom
,
Science
324
,
367
(
2009
).
11.
D.
Nuzhnyy
,
J.
Petzelt
,
S.
Kamba
,
P.
Kužel
,
C.
Kadlec
,
V.
Bovtun
,
M.
Kempa
,
J.
Schubert
,
C. M.
Brooks
, and
D. G.
Schlom
,
Appl. Phys. Lett.
95
,
232902
(
2009
).
12.
M. D.
Biegalski
,
E.
Vlahos
,
G.
Sheng
,
Y. L.
Li
,
M.
Bernhagen
,
P.
Reiche
,
R.
Uecker
,
S. K.
Streiffer
,
L. Q.
Chen
,
V.
Gopalan
,
D. G.
Schlom
, and
S.
Trolier-McKinstry
,
Phys. Rev. B
79
,
224117
(
2009
).
13.
A.
Vasudevarao
,
S.
Denev
,
M. D.
Biegalski
,
Y. L.
Li
,
L. Q.
Chen
,
S.
Trolier-McKinstry
,
D. G.
Schlom
, and
V.
Gopalan
,
Appl. Phys. Lett.
92
,
192902
(
2008
).
14.
R.
Wördenweber
,
E.
Hollmann
,
R.
Kutzner
, and
J.
Schubert
,
J. Appl. Phys.
102
,
044119
(
2007
).
15.
J. H.
Haeni
,
P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craigo
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
,
Nature (London)
430
,
758
(
2004
).
16.
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
61
,
R825
(
2000
);
N. A.
Pertsev
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
65
,
219901
(E) (
2002
).
17.
Y. L.
Li
,
S.
Choudhury
,
J. H.
Haeni
,
M. D.
Biegalski
,
A.
Vasudevarao
,
A.
Sharan
,
H. Z.
Ma
,
J.
Levy
,
V.
Gopalan
,
S.
Trolier-McKinstry
,
D. G.
Schlom
,
Q. X.
Jia
, and
L. Q.
Chen
,
Phys. Rev. B
73
,
184112
(
2006
).
18.
A.
Antons
,
J. B.
Neaton
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. B
71
,
024102
(
2005
).
19.
G.
Sheng
,
Y. L.
Li
,
J. X.
Zhang
,
V.
Gopalan
,
D. G.
Schlom
,
Q. X.
Jia
,
Z. K.
Liu
, and
L. Q.
Chen
,
Appl. Phys. Lett.
96
,
232902
(
2010
).
20.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Acta Mater.
50
,
395
(
2002
).
21.
Y. H.
Zhang
,
J. Y.
Li
, and
D. N.
Fang
,
J. Appl. Phys.
107
,
034107
(
2010
).
22.
A.
Kontsos
and
C. M.
Landis
,
ASME J. Appl. Mech.
77
,
041014
(
2010
).
23.
A.
Artemev
,
B.
Geddes
,
J.
Slutsker
, and
A.
Roytburd
,
J. Appl. Phys.
103
,
074104
(
2008
).
24.
Y. C.
Song
,
A. K.
Soh
, and
Y.
Ni
,
J. Phys. D: Appl. Phys.
40
,
1175
(
2007
).
25.
C. -H.
Lin
,
C. -M.
Huang
, and
G. Y.
Guo
,
J. Appl. Phys.
100
,
084104
(
2006
).
26.
Y. L.
Li
,
L. Q.
Chen
,
G.
Asayama
,
D. G.
Schlom
,
M. A.
Zurbuchen
, and
S. K.
Streiffer
,
J. Appl. Phys.
95
,
6332
(
2004
).
27.
A. K.
Tagantsev
,
Ferroelectrics
375
,
19
(
2008
).
28.
C. H.
Woo
and
Y.
Zheng
,
Appl. Phys. A: Mater. Sci. Process.
91
,
59
(
2008
).
29.
L. Q.
Chen
,
Physics of Ferroelectrics
(
Springer
,
Berlin
,
2007
), Vol.
105
, p.
367
.
30.
Materials constants for SrTiO3: α1=4.5×103[coth(54/T)coth(54/30)], α11=2.1×1012, α12=4.85×1012, β11=1.69×1043, β12=3.88×1043, Q11=5.09×1013, Q12=1.50×1013, Q44=1.065×1013, Λ11=8.7×1014, Λ12=7.8×1014, Λ44=9.2×1014, c11=3.36×1012, c12=1.07×1012, c44=1.27×1012, t11=1.94×1015, t12=0.84×1015, t44=6.51×1015 (in cgs units and T in Kelvin).
31.
A.
Yamanaka
,
M.
Kataoka
,
Y.
Inaba
,
K.
Inoue
,
B.
Hehlen
, and
E.
Courtens
,
Europhys. Lett.
50
,
688
(
2000
).
32.
R. C.
Neville
,
B.
Hoeneisen
, and
C. A.
Mead
,
J. Appl. Phys.
43
,
2124
(
1972
).
You do not currently have access to this content.