We have investigated multiwalled carbon nanotubes decorated with TiO2 nanoparticles. Scanning electron microscopy and transmission electron microscopy measurements revealed that the TiO2 incorporates on the nanotubes forming large cauliflowerlike aggregates and/or small crystalline particles attached to the nanotube wall, depending on the growth conditions. A detailed Raman study was performed in pristine and a series of decorated nanotubes, where we analyzed both the Raman signal from the nanotubes and from the TiO2 nanoparticles. We demonstrate that the attached TiO2 nanoparticles affect significantly the thermal properties of the resulting hybrid nanostructure, as revealed by differentiated reactions to laser heating. This is a crucial point for modeling and optimization of devices based on nanotubes, which properties are strongly temperature dependent.

1.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Avouris
,
Carbon Nanotubes: Synthesis, Structure, Properties and Applications
(
Springer
,
New York
,
2001
).
2.
M.
Namura
,
Y.
Sato
,
N.
Sashida
,
S.
Ogino
,
K.
Motomiya
,
B.
Jeyadevan
, and
K.
Tohji
,
Fullerenes, Nanotubes, Carbon Nanostruct.
17
,
587
(
2009
).
3.
Z. Y.
Wang
,
Z. J.
Shi
, and
Z. N.
Gu
,
Carbon
48
,
443
(
2010
).
4.
A.
Corrias
,
G.
Mountjoy
,
D.
Gozzi
, and
A.
Latini
,
Nanotechnology
18
,
485610
(
2007
).
5.
J.
Khanderi
,
R. C.
Hoffmann
,
A.
Gurlo
, and
J. J.
Schneider
,
J. Mater. Chem.
19
,
5039
(
2009
).
6.
S. Y.
Jeong
,
S. C.
Lim
,
D. J.
Bae
,
Y. H.
Lee
,
H. J.
Shin
,
S. -M.
Yoon
,
J. Y.
Choi
,
O. H.
Cha
,
M. S.
Jeong
,
D.
Perello
, and
M.
Yun
,
Appl. Phys. Lett.
92
,
243103
(
2008
).
7.
T.
Yildirim
and
S.
Ciraci
,
Phys. Rev. Lett.
94
,
175501
(
2005
).
8.
R. V.
Gelamo
,
F. P.
Rouxinol
,
C.
Verissimo
,
A. R.
Vaz
,
M. A.
Bica de Moraes
, and
S. A.
Moshkalev
,
Chem. Phys. Lett.
482
,
302
(
2009
).
9.
S. -W.
Lee
and
W. M.
Sigmund
,
Chem. Commun. (Cambridge)
6
,
780
(
2003
).
10.
S.
Osswald
,
K.
Behler
, and
Y.
Gogotsi
,
J. Appl. Phys.
104
,
074308
(
2008
).
11.
I. -K.
Hsu
,
R.
Kumar
,
A.
Bushmaker
,
B. S.
Cronin
,
M. T.
Pettes
,
L.
Shi
,
T.
Brintlinger
,
M. S.
Fuhrer
, and
J.
Cumings
,
Appl. Phys. Lett.
92
,
063119
(
2008
).
12.
S. V.
Rotkin
,
V.
Perebeinos
,
A. G.
Petrov
, and
P.
Avouris
,
Nano Lett.
9
,
1850
(
2009
).
13.
E.
Pop
,
D. A.
Mann
,
K. E.
Goodson
, and
H.
Dai
,
J. Appl. Phys.
101
,
093710
(
2007
).
14.
Y.
Fan
,
S. B.
Singer
,
R.
Bergstrom
, and
B. C.
Regan
,
Phys. Rev. Lett.
102
,
187402
(
2009
).
15.
W. A.
de Heer
,
A.
Châtelain
, and
D.
Ugarte
,
Science
270
,
1179
(
1995
).
16.
J.
Wei
,
H.
Zhu
,
D.
Wu
, and
B.
Wei
,
Appl. Phys. Lett.
84
,
4869
(
2004
).
17.
V.
Swamy
,
A.
Kuznetsov
,
L. S.
Dubrovinsky
,
R. A.
Caruso
,
D. G.
Shchukin
, and
B. C.
Muddle
,
Phys. Rev. B
71
,
184302
(
2005
).
18.
G.
Zhang
,
B. K.
Roy
,
L. F.
Allard
, and
J.
Cho
,
J. Am. Ceram. Soc.
91
,
3875
(
2008
).
19.
G. A.
Tompsett
,
G. A.
Bowmaker
,
R. P.
Cooney
,
J. B.
Metson
,
K. A.
Rodgers
, and
J. M.
Seakins
,
J. Raman Spectrosc.
26
,
57
(
1995
).
20.
G.
Gouadec
and
P.
Colomban
,
Prog. Cryst. Growth Charact. Mater.
53
,
1
(
2007
).
21.
M.
Havel
,
D.
Baron
,
L.
Mazerolles
, and
P.
Colomban
,
Appl. Spectrosc.
61
,
855
(
2007
).
22.
K. -R.
Zhu
,
M. -S.
Zhang
,
Q.
Chen
, and
Z.
Yin
,
Phys. Lett. A
340
,
220
(
2005
).
23.
24.
M. S.
Dresselhaus
,
M. A.
Pimenta
,
P. C.
Eklund
, and
G.
Dresselhaus
, in
Raman Scattering in Materials Science
, edited by
W. H.
Weber
and
R.
Merlin
(
Springer-Verlag
,
NewYork
,
2000
), pp.
314
364
.
25.
S. J.
Kim
,
Y. J.
Park
,
E. J.
Ra
,
K. K.
Kim
,
K. H.
An
, and
Y. H.
Lee
,
Appl. Phys. Lett.
90
,
023114
(
2007
).
26.
F.
Huang
,
K. T.
Yue
,
P.
Tan
, and
S. -L.
Zhang
,
J. Appl. Phys.
84
,
4022
(
1998
).
27.
T.
Kawano
,
H. C.
Chiamori
,
M.
Studer
,
Q.
Zhou
,
B. D.
Sosnowchik
, and
L.
Lin
,
Nano Lett.
7
,
3686
(
2007
).
28.
W. C.
Chen
and
W. -Y.
Yin
,
IEEE Trans. Nanotechnol.
8
,
718
(
2009
).
You do not currently have access to this content.