During charging or discharging of a lithium-ion battery, lithium is extracted from one electrode and inserted into the other. This extraction-insertion reaction causes the electrodes to deform. An electrode is often composed of small active particles in a matrix. If the battery is charged at a rate faster than lithium can homogenize in an active particle by diffusion, the inhomogeneous distribution of lithium results in stresses that may cause the particle to fracture. The distributions of lithium and stress in a LiCoO2 particle are calculated. The energy release rates are then calculated for the particle containing preexisting cracks. These calculations predict the critical rate of charging and size of the particle, below which fracture is averted.

1.
Department of Energy, Basic Research Needs to Assure a Secure Energy Future, Washington,
2003
.
2.
Department of Energy, Basic Research Needs for Electrical Energy Storage, Washington,
2007
.
3.
G. A.
Nazri
and
G.
Pistoia
,
Lithium Batteries: Science and Technology
(
Kluwer Academic Publishers
,
Boston, MA
,
2003
).
4.
H. F.
Wang
,
Y. I.
Jang
,
B. Y.
Huang
,
D. R.
Sadoway
, and
Y. T.
Chiang
,
J. Electrochem. Soc.
146
,
473
(
1999
).
5.
C. K.
Chan
,
H. L.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
6.
R. A.
Huggins
and
W. D.
Nix
,
Ionics
6
,
57
(
2000
).
7.
U.
Kasavajjula
,
C. S.
Wang
, and
A. J.
Appleby
,
J. Power Sources
163
,
1003
(
2007
).
8.
V. A.
Sethuraman
,
M. J.
Chon
,
M.
Shimshak
,
V.
Srinivasan
, and
P. R.
Guduru
,
J. Power Sources
195
,
5062
(
2010
).
9.
M. G.
Lazarraga
,
S.
Mandal
,
J.
Ibanez
,
J. M.
Amarilla
, and
J. M.
Rojo
,
J. Power Sources
115
,
315
(
2003
).
10.
D. Y.
Wang
,
X. D.
Wu
,
Z. X.
Wang
, and
L. Q.
Chen
,
J. Power Sources
140
,
125
(
2005
).
11.
G. Y.
Chen
,
X. Y.
Song
, and
T. J.
Richardson
,
Electrochem. Solid-State Lett.
9
,
A295
(
2006
).
12.
H.
Gabrisch
,
J.
Wilcox
, and
M. M.
Doeff
,
Electrochem. Solid-State Lett.
11
,
A25
(
2008
).
13.
J. R.
Wilson
,
J. S.
Cronin
,
S. A.
Barnett
, and
S. J.
Harris
,
J. Power Sources
(in press).
14.
J.
Christensen
and
J.
Newman
,
J. Electrochem. Soc.
153
,
A1019
(
2006
).
15.
J.
Christensen
and
J.
Newman
,
J. Solid State Electrochem.
10
,
293
(
2006
).
16.
X. C.
Zhang
,
W.
Shyy
, and
A. M.
Sastry
,
J. Electrochem. Soc.
154
,
A910
(
2007
).
17.
X. C.
Zhang
,
A. M.
Sastry
, and
W.
Shyy
,
J. Electrochem. Soc.
155
,
A542
(
2008
).
18.
Y. T.
Cheng
and
M. W.
Verbrugge
,
J. Power Sources
190
,
453
(
2009
).
19.
Y. T.
Cheng
and
M. W.
Verbrugge
,
J. Appl. Phys.
104
,
083521
(
2008
).
20.
R.
Deshpande
,
Y. T.
Cheng
, and
M. W.
Verbrugge
,
J. Power Sources
195
,
5081
(
2010
).
21.
S.
Golmon
,
K.
Maute
,
S. -H.
Lee
, and
M. L.
Dunn
,
Appl. Phys. Lett.
97
,
033111
(
2010
).
22.
K. E.
Aifantis
,
S. A.
Hackney
, and
J. P.
Dempsey
,
J. Power Sources
165
,
874
(
2007
).
23.
Y. H.
Hu
,
X. H.
Zhao
, and
Z. G.
Suo
,
J. Mater. Res.
25
,
1007
(
2010
).
24.
T. K.
Bhandakkar
and
H. J.
Gao
,
Int. J. Solids Struct.
47
,
1424
(
2010
).
25.
Y. T.
Cheng
and
M. W.
Verbrugge
,
J. Electrochem. Soc.
157
,
A508
(
2010
).
26.
M. S.
Whittingham
,
MRS Bull.
33
,
411
(
2008
).
27.
28.
T. C.
Lu
,
J.
Yang
,
Z.
Suo
,
A. G.
Evans
,
R.
Hecht
, and
R.
Mehrabian
,
Acta Metall. Mater.
39
,
1883
(
1991
).
29.
J. W.
Hutchinson
and
Z.
Suo
,
Adv. Appl. Mech.
29
,
63
(
1991
).
30.
M.
Jo
,
Y. S.
Hong
,
J.
Choo
, and
J.
Cho
,
J. Electrochem. Soc.
156
,
A430
(
2009
).
31.
Y.
Wang
and
G. Z.
Cao
,
Adv. Mater.
20
,
2251
(
2008
).
32.
J. N.
Reimers
and
J. R.
Dahn
,
J. Electrochem. Soc.
139
,
2091
(
1992
).
33.
J.
Xie
,
N.
Imanishi
,
T.
Matsumura
,
A.
Hirano
,
Y.
Takeda
, and
O.
Yamamoto
,
Solid State Ionics
179
,
362
(
2008
).
34.
F. X.
Hart
and
J. B.
Bates
,
J. Appl. Phys.
83
,
7560
(
1998
).
35.
D.
Kramer
and
G.
Ceder
,
Chem. Mater.
21
,
3799
(
2009
).
36.
V. B.
Shenoy
,
P.
Johari
, and
Y.
Qi
,
J. Power Sources
195
,
6825
(
2010
).
You do not currently have access to this content.