Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg–Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg–Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg–Pd intermetallics, which attain the maximum value of 3.96wt% for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

1.
P.
Chen
and
M.
Zhu
,
Mater. Today
11
,
36
(
2008
).
2.
W.
Grochala
and
P. P.
Edwards
,
Chem. Rev.
104
,
1283
(
2004
).
3.
See references in
G.
Sandrock
and
G.
Thomas
,
Appl. Phys. A
72
,
153
(
2001
).
4.
D.
Ravnsbæk
,
Y.
Filinchuk
,
Y.
Cerenius
,
H. J.
Jakobsen
,
F.
Besenbacher
,
J.
Skibsted
, and
T. R.
Jensen
,
Angew. Chem., Int. Ed.
48
,
6659
(
2009
).
5.
A.
Baldi
,
M.
Gonzalez-Silveira
,
V.
Palmisano
,
B.
Dam
, and
R.
Griessen
,
Phys. Rev. Lett.
102
,
226102
(
2009
).
6.
T. K.
Nielsen
,
K.
Manickam
,
M.
Hirscher
,
F.
Besenbacher
, and
T. R.
Jensen
,
ACS Nano
3
,
3521
(
2009
).
7.
M.
Pasturel
,
M.
Slaman
,
H.
Schreuders
,
J. H.
Rector
,
D. M.
Borsa
,
B.
Dam
, and
R.
Griessen
,
J. Appl. Phys.
100
,
023515
(
2006
).
8.
J. N.
Huiberts
,
R.
Griessen
,
J. H.
Rector
,
R. J.
Wijngaarden
,
J. P.
Dekker
,
D. G.
de Groot
, and
N. J.
Koeman
,
Nature (London)
380
,
231
(
1996
).
9.
P.
Hjort
,
A.
Krozer
, and
B.
Kasemo
,
J. Alloys Compd.
237
,
74
(
1996
).
10.
K.
Higuchi
,
K.
Yamamoto
,
H.
Kajioka
,
K.
Toiyama
,
M.
Honda
,
S.
Orimo
, and
H.
Fujii
,
J. Alloys Compd.
330–332
,
526
(
2002
).
11.
R.
Kelekar
,
H.
Giffard
,
S. T.
Kelly
, and
B. M.
Clemens
,
J. Appl. Phys.
101
,
114311
(
2007
).
12.
R.
Gremaud
,
A.
Baldi
,
M.
Gonzalez-Silveira
,
B.
Dam
, and
R.
Griessen
,
Phys. Rev. B
77
,
144204
(
2008
).
13.
F.
Tang
,
T.
Parker
,
H. -F.
Li
,
G. -C.
Wang
, and
T. -M.
Lu
,
Nanotechnology
19
,
465706
(
2008
).
14.
W. Y.
Li
,
C. S.
Li
,
H.
Ma
, and
J.
Chen
,
J. Am. Chem. Soc.
129
,
6710
(
2007
).
15.
C.
Zlotea
,
M.
Sahlberg
,
S.
Özbilen
,
P.
Moretto
, and
Y.
Andersson
,
Acta Mater.
56
,
2421
(
2008
).
16.
L.
Pasquini
,
E.
Callini
,
E.
Piscopiello
,
A.
Montone
,
M.
Vittori Antisari
, and
E.
Bonetti
,
Appl. Phys. Lett.
94
,
041918
(
2009
).
17.
A. F.
Gross
,
C. C.
Ahn
,
S. L.
Van Atta
,
P.
Liu
, and
J. J.
Vajo
,
Nanotechnology
20
,
204005
(
2009
).
18.
E.
Callini
,
L.
Pasquini
,
E.
Piscopiello
,
A.
Montone
,
M.
Vittori Antisari
, and
E.
Bonetti
,
Appl. Phys. Lett.
94
,
221905
(
2009
).
19.
J. P.
Makongo
,
Y.
Prots
,
U.
Burkhardt
,
R.
Niewa
,
C.
Kudla
, and
G.
Kreiner
,
Philos. Mag.
86
,
427
(
2006
).
20.
Y.
Kume
and
A.
Weiss
,
J. Less-Common Met.
136
,
51
(
1987
).
21.
J.
Huot
,
A.
Yonkeu
, and
J.
Dufour
,
J. Alloys Compd.
475
,
168
(
2009
).
22.
J. F.
Fernandez
,
J. R.
Ares
,
F.
Cuevas
,
J.
Bodega
,
F.
Leardini
, and
C.
Sánchez
,
Intermetallics
18
,
233
(
2010
).
23.
L.
Lutterotti
,
Nucl. Instrum. Methods Phys. Res. B
268
,
334
(
2010
).
24.
L.
Pasquini
,
F.
Boscherini
,
E.
Callini
,
C.
Maurizio
,
L.
Pasquali
,
M.
Montecchi
, and
E.
Bonetti
(unpublished).
26.
C.
Zlotea
and
Y.
Andersson
,
Acta Mater.
54
,
5559
(
2006
).
27.
T. R.
Jensen
,
A.
Andreasen
,
T.
Vegge
,
J. W.
Andreasen
,
K.
Ståhl
,
A. S.
Pedersen
,
M. M.
Nielsen
,
A. M.
Molenbroek
, and
F.
Besenbacher
,
Int. J. Hydrogen Energy
31
,
2052
(
2006
).
28.
A.
Andreasena
,
M. B.
Sørensen
,
R.
Burkarl
,
B.
Møller
,
A. M.
Molenbroek
,
A. S.
Pedersen
,
J. W.
Andreasen
,
M. M.
Nielsen
, and
T. R.
Jensen
,
J. Alloys Compd.
404–406
,
323
(
2005
).
29.
A.
Andreasen
,
M. B.
Sørensen
,
R.
Burkarl
,
B.
Møller
,
A. M.
Molenbroek
,
A. S.
Pedersen
,
T.
Vegge
, and
T. R.
Jensen
,
Appl. Phys. A: Mater. Sci. Process.
82
,
515
(
2006
).
30.
A.
Montone
,
J.
Grbovic
,
M.
Vittori Antisari
,
A.
Bassetti
,
E.
Bonetti
,
A. L.
Fiorini
,
L.
Pasquini
,
L.
Mirenghi
, and
P.
Rotolo
,
Int. J. Hydrogen Energy
32
,
2926
(
2007
).
You do not currently have access to this content.