A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanche breakdown time (10–200 ns) and could profitably be as long as the statistical lag time in ambient air (typically, microseconds). Candidate pulsed electromagnetic sources over a wavelength range, 3mm>λ>10.6μm, are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW, 10μs output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO2 laser with 30 MW, 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO2 laser could have a longer range >100m.

1.
N.
Gopalsami
,
H. T.
Chien
,
A.
Heifetz
,
E. R.
Koehl
, and
A. C.
Raptis
,
Rev. Sci. Instrum.
80
,
084702
(
2009
).
2.
R.
Paschotta
, “Laser induced breakdown” in Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/laser _induced_breakdown.html
3.
P.
Woskoboinikow
,
W. J.
Mulligan
,
H. C.
Praddaude
, and
D. R.
Cohn
,
Appl. Phys. Lett.
32
,
527
(
1978
).
4.
G.
Nusinovich
,
V.
Granatstein
,
T.
Antonsen
, Jr.
,
R.
Pu
,
O.
Sinitsyn
,
J.
Rodgers
,
A.
Mohamed
,
J.
Silverman
,
M.
Al-Sheikhly
, and
Y.
Dimant
,
IEEE International Vacuum Electronics Conference
, Monterey, CA, May 18–20,
2010
, IVEC 2010 Book of Abstracts (
IEEE
cat. no. CFP10VAM-ART), pp.
197
198
.
5.
A. D.
McDonald
,
Microwave Breakdown in Gases
(
Wiley
,
New York
,
1966
), p.
162
.
6.
A. V.
Gurevich
,
N. D.
Borisov
, and
G. M.
Milikh
,
Artificially Ionized Regions in the Atmosphere
(
Gordon and Breach
,
Reading, England
,
1997
).
7.
G. S.
Nusinovich
,
G. M.
Milikh
, and
B.
Levush
,
J. Appl. Phys.
80
,
4189
(
1996
).
8.
K.
Tsang
,
K.
Papadopoupos
,
A.
Drobot
,
P.
Vitello
,
T.
Wallace
, and
R.
Shanny
,
Radio Sci.
26
,
1345
(
1991
).
9.
K.
Papadopoulos
,
G. M.
Milikh
,
A. V.
Gurevich
,
A.
Drobot
, and
R.
Shanny
,
J. Geophys. Res.
98
,
17
593
(
1993
).
10.
M.
Messaad
and
M.
Tioursi
,
Turkish Journal of Electrical Engineering and Computer Sciences
11
,
169
(
2003
).
11.
A.
Yariv
,
Quantum Electronics
(
Wiley
,
New York
,
1975
).
12.
W.
Lawson
,
R. L.
Ives
,
M.
Mizuhara
,
J. M.
Nelson
, and
M. E.
Read
,
IEEE Trans. Plasma Sci.
29
,
545
(
2001
). This amplifier has been designed for an output power of 10 MW and has been constructed; it is awaiting high voltage testing. We estimate an output power of only 1.5 MW since the output power achieved in a previous second harmonic GKL was 32 MW at 19.7 GHz (Ref. 12) and peak power scaling as f2 is assumed.
13.
V.
Granatstein
and
W.
Lawson
,
IEEE Trans. Plasma Sci.
24
,
648
(
1996
).
14.
G.
Nusinovich
,
R.
Pu
,
T.
Antonsen
, Jr.
,
O.
Sinisyn
,
J.
Rodgers
,
A.
Mohamed
,
J.
Silverman
,
M.
Al-Sheikhly
,
Y.
Dimant
,
G.
Milikh
,
M. Y.
Glyavin
,
A.
Luchinin
,
E.
Kopelovich
, and
V.
Granatstein
, “
Development of THz-range gyrotrons for detection of concealed radioactive materials
,”
Int. J. Infrared Millim. Waves
(to be published), special issue on gyrotrons. The gyrotron oscillator described in Refs. 4 and 14 has design output power of 300 kW and efficiency about 30%; this power and efficiency are a factor of 3 above those achieved in gyrotron oscillator experiments described in Ref. 15. An experimental program to realize the enhanced performance is underway at the University of Maryland. In the present paper, an output power of 200 kW is assumed.
15.
V. A.
Flyagin
,
A. G.
Luchinin
, and
G. S.
Nusinovich
,
Int. J. Infrared Millim. Waves
4
,
629
(
1983
).
16.
M. V.
Ivashchenko
,
A. I.
Karapuzikov
,
A. N.
Malov
, and
I. V.
Sherstov
,
Instrum. Exp. Tech.
43
,
119
(
2000
).
You do not currently have access to this content.