The structures of carbon nanotubes grown from catalytic nanoparticles via plasma-enhanced chemical vapor deposition in CH4/H2 mixtures show a strong dependence on the H2-to-CH4 ratio in the feed gas. A suite of characterization techniques, including optical emission, infrared, and Raman spectroscopies combined with convergent-beam and selected-area electron diffraction, and high-resolution (scanning) transmission electron microscopy imaging were used to systematically investigate the interrelation among plasma gas phase composition, catalysts morphology, catalyst structure, and carbon nanotube structure. Hydrogen plays a critical role in determining the final carbon nanotube structure through its effect on the catalyst crystal structure and morphology. At low H2-to-CH4 ratios (1), iron catalyst nanoparticles are converted to Fe3C and well-graphitized nanotubes grow from elongated Fe3C crystals. High (>5)H2-to-CH4 ratios in the feed gas result in high hydrogen concentrations in the plasma and strongly reducing conditions, which prevents conversion of Fe to Fe3C. In the latter case, poorly-graphitized nanofibers grow from ductile bcc iron nanocrystals that are easily deformed into tapered nanocrystals that yield nanotubes with thick walls.

1.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
2.
A.
Jorio
,
Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications
(
Springer
,
Berlin
,
2008
).
3.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
J. C.
Charlier
, and
E.
Hernandez
,
Philos. Trans. R. Soc. London, Ser. A
362
,
2065
(
2004
).
4.
M.
Meyyappan
,
J. Phys. D: Appl. Phys.
42
,
213001
(
2009
).
5.
M. S.
Bell
,
K. B. K.
Teo
, and
W. I.
Milne
,
J. Phys. D: Appl. Phys.
40
,
2285
(
2007
).
6.
J. B. O.
Caughman
,
L. R.
Baylor
,
M. A.
Guillorn
,
V. I.
Merkulov
,
D. H.
Lowndes
, and
L. F.
Allard
,
Appl. Phys. Lett.
83
,
1207
(
2003
).
7.
T. Y.
Lee
,
J. H.
Han
,
S. H.
Choi
,
J. B.
Yoo
,
C. Y.
Park
,
T.
Jung
,
S.
Yu
,
W. K.
Yi
,
I. T.
Han
, and
J. M.
Kim
,
Diamond Relat. Mater.
12
,
851
(
2003
).
8.
P. E.
Nolan
,
D. C.
Lynch
, and
A. H.
Cutler
,
J. Phys. Chem. B
102
,
4165
(
1998
).
9.
M.
Chhowalla
,
K. B. K.
Teo
,
C.
Ducati
,
N. L.
Rupesinghe
,
G. A. J.
Amaratunga
,
A. C.
Ferrari
,
D.
Roy
,
J.
Robertson
, and
W. I.
Milne
,
J. Appl. Phys.
90
,
5308
(
2001
).
10.
Y. S.
Woo
,
D. Y.
Jeon
,
I. T.
Han
,
N. S.
Lee
,
J. E.
Jung
, and
J. M.
Kim
,
Diamond Relat. Mater.
11
,
59
(
2002
).
11.
S. H.
Lim
,
H. S.
Yoon
,
J. H.
Moon
,
K. C.
Park
, and
J.
Jang
,
Appl. Phys. Lett.
88
,
033114
(
2006
).
12.
L.
Delzeit
,
I.
McAninch
,
B. A.
Cruden
,
D.
Hash
,
B.
Chen
,
J.
Han
, and
M.
Meyyappan
,
J. Appl. Phys.
91
,
6027
(
2002
).
13.
N. M.
Rodriguez
,
A.
Chambers
, and
R. T. K.
Baker
,
Langmuir
11
,
3862
(
1995
).
14.
H.
Kim
and
W.
Sigmund
,
Carbon
43
,
1743
(
2005
).
15.
Y.
Yao
,
L. K. L.
Falk
,
R. E.
Morjan
,
O. A.
Nerushev
, and
E. E. B.
Campbell
,
J. Mater. Sci.: Mater. Electron.
15
,
583
(
2004
).
16.
D.
Golberg
,
M.
Mitome
,
C.
Muller
,
C.
Tang
,
A.
Leonhardt
, and
Y.
Bando
,
Acta Mater.
54
,
2567
(
2006
).
17.
H.
Yoshida
,
S.
Takeda
,
T.
Uchiyama
,
H.
Kohno
, and
Y.
Homma
,
Nano Lett.
8
,
2082
(
2008
).
18.
V. D.
Blank
,
Y. L.
Alshevskiy
,
A. I.
Zaitsev
,
N. V.
Kazennov
,
I. A.
Perezhogin
, and
B. A.
Kulnitskiy
,
Scr. Mater.
55
,
1035
(
2006
).
19.
A.
Tanaka
,
S. H.
Yoon
, and
I.
Mochida
,
Carbon
42
,
591
(
2004
).
20.
S.
Agarwal
,
A.
Takano
,
M. C. M.
van de Sanden
,
D.
Maroudas
, and
E. S.
Aydil
,
J. Chem. Phys.
117
,
10805
(
2002
).
21.
J. W.
Coburn
and
M.
Chen
,
J. Appl. Phys.
51
,
3134
(
1980
).
22.
A.
Gicquel
,
M.
Chenevier
,
K.
Hassouni
,
A.
Tserepi
, and
M.
Dubus
,
J. Appl. Phys.
83
,
7504
(
1998
).
23.
I. B.
Denysenko
,
S.
Xu
,
J. D.
Long
,
P. P.
Rutkevych
,
N. A.
Azarenkov
, and
K.
Ostrikov
,
J. Appl. Phys.
95
,
2713
(
2004
).
24.
J.
Ma
,
M. N. R.
Ashfold
, and
Y. A.
Mankelevich
,
J. Appl. Phys.
105
,
043302
(
2009
).
25.
C.
Deschenaux
,
A.
Affolter
,
D.
Magni
,
C.
Hollenstein
, and
P.
Fayet
,
J. Phys. D: Appl. Phys.
32
,
1876
(
1999
).
26.
R. J.
Nemanich
,
J. T.
Glass
,
G.
Lucovsky
, and
R. E.
Shroder
,
J. Vac. Sci. Technol. A
6
,
1783
(
1988
).
27.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
28.
F.
Tuinstra
and
J. L.
Koenig
,
J. Chem. Phys.
53
,
1126
(
1970
).
29.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
(
Plenum
,
New York
,
1996
).
30.
M. J.
Behr
,
K. A.
Mkhoyan
, and
E. S.
Aydil
,
Carbon
48
,
3840
(
2010
).
31.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Prentice-Hall
,
New York
,
1939
).
32.
D. A.
McQuarrie
,
Quantum chemistry
(
University Science Books
,
Sausalito, California
,
2008
).
33.
R. S.
McDowell
,
J. Quant. Spectrosc. Radiat. Transf.
38
,
337
(
1987
).
You do not currently have access to this content.