In this paper we investigate the effects of intravalley acoustic phonon scattering on the quantum transport and on the electrical characteristics of multigate silicon nanowire metal-oxide-semiconductor field-effect transistors. We show that acoustic phonons cause a shift and broadening of the local DOS in the nanowire, which modifies the electrical characteristics of the device. The influence of scattering on off-state and on-state currents is investigated for different values of channel length. In the ballistic transport regime, source-to-drain tunneling current is predominant, whereas in the presence of acoustic phonons, diffusion becomes the dominant current transport mechanism. A three-dimensional quantum mechanical device simulator based on the nonequilibrium Green’s function formalism in uncoupled-mode space has been developed to extract device parameters in the presence of electron–phonon interactions. Electron–phonon scattering is accounted for by adopting the self-consistent Born approximation and using the deformation potential theory.

1.
M.
Shin
,
IEEE Trans. Nanotechnol.
6
,
230
(
2007
).
2.
J. P.
Colinge
,
Solid-State Electron.
51
,
1153
(
2007
).
3.
J. P.
Colinge
,
Nanoscaled Semiconductor-on-Insulator Structures and Devices
,
NATO Science for Peace and Security Series B: Physics and Biophysics
, pp.
159
164
,
2007
).
4.
J.
Wang
,
E.
Polizzi
, and
M.
Lundstrom
,
J. Appl. Phys.
96
,
2192
(
2004
).
5.
Y.
Yamada
,
H.
Tsuchiya
, and
M.
Ogawa
,
IEEE Trans. Electron Devices
56
,
1396
(
2009
).
6.
S.
Barraud
,
J. Appl. Phys.
106
,
063714
(
2009
).
7.
A.
Martinez
,
M.
Bescond
,
J. R.
Barker
,
A.
Svizhenko
,
M. P.
Anantram
,
C.
Millar
, and
A.
Asenov
,
IEEE Trans. Electron Devices
54
,
2213
(
2007
).
8.
A. R.
Brown
,
A.
Martinez
,
N.
Seoane
, and
A.
Asenov
,
Comparison of Density Gradient and NEGF for 3D Simulation of a Nanowire MOSFET
,
Proceedings of the Spanish Conference on Electron Devices (CDE)
, Feb. 11–13, Santiago de Compostela, Spain, pp.
140
143
,
2009
.
9.
S. O.
Koswatta
,
S.
Hasan
,
M. S.
Lundstrom
,
M. P.
Anantram
, and
D. E.
Nikonov
,
IEEE Trans. Electron Devices
54
,
2339
(
2007
).
10.
M.
Pourfath
,
H.
Kosina
, and
S.
Selberherr
,
J. Phys.: Conf. Ser.
109
,
012029
(
2008
).
11.
M.
Pourfath
,
H.
Kosina
, and
S.
Selberherr
,
Math. Comput. Simul.
79
,
1051
(
2008
).
12.
S.
Jin
,
Y. J.
Park
, and
H. S.
Min
,
J. Appl. Phys.
99
,
123719
(
2006
).
13.
M.
Pourfath
,
H.
Kosina
, and
S.
Selberherr
,
J. Phys.: Conf. Ser.
38
,
29
(
2006
).
14.
M.
Luisier
and
G.
Klimeck
,
Phys. Rev. B
80
,
155430
(
2009
).
15.
K.
Rogdakis
,
S.
Poli
,
E.
Bano
,
K.
Zekentes
, and
M. G.
Pala
,
Nanotechnology
20
,
295202
(
2009
).
16.
S.
Poli
and
M. G.
Pala
,
IEEE Electron Device Lett.
30
,
1212
(
2009
).
17.
R.
Venugopal
,
M.
Paulsson
,
S.
Goasguen
,
S.
Datta
, and
M. S.
Lundstrom
,
J. Appl. Phys.
93
,
5613
(
2003
).
18.
N. D.
Akhavan
,
A.
Afzalian
,
C. W.
Lee
,
R.
Yan
,
I.
Ferain
,
P.
Razavi
,
G.
Fagas
, and
J. P.
Colinge
,
IEEE Trans. Electron Devices
57
,
1102
(
2010
).
19.
A.
Afzalian
,
N. D.
Akhavan
, and
C. W.
Lee
,
Y. R. I.
Ferain
,
P.
Razavi
, and
J. P.
Colinge
,
J. Comput. Electron.
8
,
287
(
2009
).
20.
A.
Svizhenko
and
M. P.
Anantram
,
IEEE Trans. Electron Devices
50
,
1459
(
2003
).
21.
E. B.
Ramayya
,
D.
Vasileska
,
S. M.
Goodnick
, and
I.
Knezevic
,
J. Appl. Phys.
104
,
063711
(
2008
).
22.
J.
Guo
,
J. Appl. Phys.
98
,
063519
(
2005
).
23.
H.
Tsuchiya
and
S.
Takagi
,
IEEE Trans. Electron Devices
55
,
2397
(
2008
).
You do not currently have access to this content.