Molten metallic nanoparticles have recently been used to construct graphene nanostructures with crystallographic edges. The mechanism by which this happens, however, remains unclear. Here, we present a simple model that explains how a droplet can etch graphene. Two factors possibly contribute to this process: a difference between the equilibrium wettability of graphene and the substrate that supports it, or the large surface energy associated with the graphene edge. We calculate the etching velocities due to either of these factors and make testable predictions for evaluating the significance of each in graphene etching. This model is general and can be applied to other materials systems as well. As an example, we show how our model can be used to extend a current theory of droplet motion on binary semiconductor surfaces.

2.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
3.
Y. W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
97
,
216803
(
2006
).
4.
V.
Barone
,
O.
Hod
, and
G. E.
Scuseria
,
Nano Lett.
6
,
2748
(
2006
).
5.
Q. M.
Yan
,
B.
Huang
,
J.
Yu
,
F. W.
Zheng
,
J.
Zang
,
J.
Wu
,
B. L.
Gu
,
F.
Liu
, and
W. H.
Duan
,
Nano Lett.
7
,
1469
(
2007
).
6.
Y. W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Nature (London)
444
,
347
(
2006
).
7.
M. Y.
Han
,
J. C.
Brant
, and
P.
Kim
,
Phys. Rev. Lett.
104
,
056801
(
2010
).
8.
D.
Gunlycke
,
D. A.
Areshkin
,
J.
Li
,
J. W.
Mintmire
, and
C. T.
White
,
Nano Lett.
7
,
3608
(
2007
).
9.
D.
Basu
,
M. J.
Gilbert
,
L. F.
Register
,
S. K.
Banerjee
, and
A. H.
MacDonald
,
Appl. Phys. Lett.
92
,
042114
(
2008
).
10.
T. C.
Li
and
S. P.
Lu
,
Phys. Rev. B
77
,
085408
(
2008
).
11.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
54
,
17954
(
1996
).
12.
L.
Brey
and
H. A.
Fertig
,
Phys. Rev. B
73
,
235411
(
2006
).
13.
S. S.
Datta
,
D. R.
Strachan
,
S. M.
Khamis
, and
A. T. C.
Johnson
,
Nano Lett.
8
,
1912
(
2008
).
14.
L.
Ci
,
Z.
Xu
,
L.
Wang
,
W.
Gao
,
F.
Ding
,
K. F.
Kelly
,
B. I.
Yakobson
, and
P. M.
Ajayan
,
Nano Res.
1
,
116
(
2008
).
15.
16.
F. D.
Dos Santos
and
T.
Ondarcuhu
,
Phys. Rev. Lett.
75
,
2972
(
1995
).
17.
C.
Klinke
,
J. M.
Bonard
, and
K.
Kern
,
J. Phys. Chem. B
108
,
11357
(
2004
).
18.
Y.
Shibuta
and
T.
Suzuki
,
Chem. Phys. Lett.
445
,
265
(
2007
).
19.
Y.
Homma
,
Y.
Kobayashi
,
T.
Ogino
,
D.
Takagi
,
R.
Ito
,
Y. J.
Jung
, and
P. M.
Ajayan
,
J. Phys. Chem. B
107
,
12161
(
2003
).
20.
L. R.
Radovic
and
B.
Bockrath
,
J. Am. Chem. Soc.
127
,
5917
(
2005
).
21.
D. E.
Jiang
,
B. G.
Sumpter
, and
S.
Dai
,
J. Chem. Phys.
126
,
134701
(
2007
).
22.
R.
Sharma
,
N.
Nair
, and
M. S.
Strano
,
J. Phys. Chem. C
113
,
14771
(
2009
).
23.
L. C.
Campos
,
V. R.
Manfrinato
,
J. D.
Sanchez-Yamagishi
,
J.
Kong
, and
P.
Jarillo-Herrero
,
Nano Lett.
9
,
2600
(
2009
).
24.
A. L.
Elías
,
A. R.
Botello-Mendez
,
D.
Meneses-Rodriguez
,
V. J.
Gonzalez
,
D.
Ramirez-Gonzalez
,
L.
Ci
,
E.
Munoz-Sandoval
,
P. M.
Ajayan
,
H.
Terrones
, and
M.
Terrones
,
Nano Lett.
10
,
366
(
2010
).
25.
F.
Schäffel
,
J. H.
Warner
,
A.
Bachmatiuk
,
B.
Rellinghaus
,
B.
Büchner
,
L.
Schultz
, and
M. H.
Rümmeli
,
Nano Res.
2
,
695
(
2009
).
26.
F.
Schaffel
,
J. H.
Warner
,
A.
Bachmatiuk
,
B.
Rellinghaus
,
B.
Buchner
,
L.
Schultz
, and
M. H.
Rummeli
,
Phys. Status Solidi B
246
,
2540
(
2009
).
27.
L.
Ci
,
L.
Song
,
D.
Jariwala
,
A. L.
Elias
,
W.
Gao
,
M.
Terrones
, and
P. M.
Ajayan
,
Adv. Mater.
21
,
4487
(
2009
).
28.
N.
Severin
,
S.
Kirstein
,
I. M.
Sokolov
, and
J. P.
Rabe
,
Nano Lett.
9
,
457
(
2009
).
29.
J. H.
Warner
,
M. H.
Rummeli
,
A.
Bachmatiuk
,
M.
Wilson
, and
B.
Buchner
,
ACS Nano
4
,
470
(
2010
).
30.
P.
Buffat
and
J. P.
Borel
,
Phys. Rev. A
13
,
2287
(
1976
).
31.
J. M.
Thomas
,
Chemistry and Physics of Carbon
(
Marcel Dekker
,
New York
,
1965
), Vol.
1
.
32.
CRC Handbook of Chemistry and Physics
, 90th ed., edited by
D. R.
Lide
and
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2009
).
33.
Y.
Wang
,
B.
Li
,
P. S.
Ho
,
Z.
Yao
, and
L.
Shi
,
Appl. Phys. Lett.
89
,
183113
(
2006
).
34.
Z.
Luo
,
L. A.
Somers
,
Y.
Dan
,
T.
Ly
,
N. J.
Kybert
,
E. J.
Mele
, and
A. T. C.
Johnson
,
Nano Lett.
10
,
777
(
2010
).
35.
P. G.
de Gennes
,
Rev. Mod. Phys.
57
,
827
(
1985
).
36.
C.
Huh
and
L. E.
Scriven
,
J. Colloid Interface Sci.
35
,
85
(
1971
).
37.
F.
Brochard-Wyart
and
P. G.
de Gennes
,
Langmuir
10
,
2440
(
1994
).
38.
W.
Sutherland
,
Philos. Mag.
5
,
507
(
1895
).
39.
P.
Koskinen
,
S.
Malola
, and
H.
Hakkinen
,
Phys. Rev. Lett.
101
,
115502
(
2008
).
40.
T.
Kawai
,
Y.
Miyamoto
,
O.
Sugino
, and
Y.
Koga
,
Phys. Rev. B
62
,
R16349
(
2000
).
41.
C. K.
Gan
and
D. J.
Srolovitz
, “
Trends in graphene edge properties and flake shapes: a first-principles study
,”
Phys. Rev. B
81
,
125445
(
2010
).
42.
S. V.
Rotkin
, “
On surface energy of graphene and carbon nanoclusters
,” arXiv:cond-mat/0107312 (unpublished).
43.
V. L.
Kuznetsov
,
A. N.
Usoltseva
,
A. L.
Chuvilin
,
E. D.
Obraztsova
, and
J. M.
Bonard
,
Phys. Rev. B
64
,
235401
(
2001
).
44.
D. R.
Strachan
,
D. E.
Johnston
,
B. S.
Guiton
,
S. S.
Datta
,
P. K.
Davies
,
D. A.
Bonnell
, and
A. T. C.
Johnson
,
Phys. Rev. Lett.
100
,
056805
(
2008
).
45.
L.
Zhao
and
V.
Sahajwalla
,
ISIJ Int.
43
,
1
(
2003
).
46.
V. I.
Nizhenko
and
L. I.
Floka
,
Powder Metall. Met. Ceram.
13
,
487
(
1974
).
47.
The Science of Materials Used in Advanced Technology
, edited by
E. R.
Parker
and
U.
Colombo
(
Wiley
,
New York
,
1973
).
48.
V. I.
Kostikov
,
M. A.
Maurakh
, and
A. V.
Nozhkina
,
Powder Metall. Met. Ceram.
10
,
62
(
1971
).
49.
Cermets
, edited by
J. R.
Tinklepaugh
and
W. B.
Crandall
(
Reinhold
,
New York
,
1960
).
50.
Y. V.
Naidich
,
V. M.
Perevertailo
, and
G. M.
Nevodnik
,
Powder Metall. Met. Ceram.
11
,
555
(
1972
).
51.
C. P.
Buhsmer
and
E. A.
Heintz
,
J. Mater. Sci.
4
,
592
(
1969
).
52.
R.
Asthana
,
Metall. Mater. Trans. A
25
,
225
(
1994
).
53.
N.
Eustathopoulos
and
B.
Drevet
,
J. Phys. III France
4
,
1865
(
1994
).
54.
S. J.
Hitchcock
,
N. T.
Carroll
, and
M. G.
Nicholas
,
J. Mater. Sci.
16
,
714
(
1981
).
55.
C.
Favazza
,
J.
Trice
,
H.
Krishna
,
R.
Kalyanaraman
, and
R.
Sureshkumar
,
Appl. Phys. Lett.
88
,
153118
(
2006
).
56.
S.
Kalogeropoulou
,
L.
Baud
, and
N.
Eustathopoulos
,
Acta Metall. Mater.
43
,
907
(
1995
).
57.
N.
Eustathopoulos
,
M. G.
Nicholas
, and
B.
Drevet
,
Wettability at High Temperatures
(
Pergamon
,
Oxford
,
1999
).
58.
G. A.
Yasinskaya
,
Powder Metall. Met. Ceram.
5
,
557
(
1966
).
59.
Y. V.
Naidich
,
V. S.
Zhuravlev
,
N. I.
Frumina
,
B. D.
Kostyuk
,
N. A.
Krasovskaya
, and
V. G.
Ostrovskii
,
Powder Metall. Met. Ceram.
27
,
888
(
1988
).
60.
P. P.
Pikuza
,
A. D.
Panasyuk
, and
I. P.
Neshpor
,
Refract. Ind. Ceram.
26
,
189
(
1985
).
61.
G. V.
Samsonov
,
A. D.
Panasyuk
, and
I. M.
Finkel’shtein
,
Powder Metall. Met. Ceram.
16
,
392
(
1977
).
62.
M.
Naka
,
M.
Kubo
, and
I.
Okamoto
,
J. Mater. Sci. Lett.
6
,
965
(
1987
).
63.
L.
Liao
,
J.
Bai
,
Y.
Qu
,
Y.
Huang
, and
X.
Duan
,
Nanotechnology
21
,
015705
(
2010
).
64.
A.
Klekachev
,
M.
Cantoro
,
A.
Nourbakhsh
,
M. H.
Van der Veen
,
F.
Clemente
,
A. L.
Stesmans
,
B.
Sels
,
M.
Heyns
, and
S.
De Gendt
,
ECS Trans.
19
(
5
),
201
(
2009
).
65.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
66.
Y. J.
Shin
,
Y.
Wang
,
H.
Huang
,
G.
Kalon
,
A. T. S.
Wee
,
Z.
Shen
,
C. S.
Bhatia
, and
H.
Yang
,
Langmuir
26
,
3798
(
2010
).
67.
J.
Rafiee
,
M. A.
Rafiee
,
Z. Z.
Yu
, and
N.
Koratkar
,
Adv. Mater.
22
,
2151
(
2010
).
68.
J.
Tersoff
,
D. E.
Jesson
, and
W. X.
Tang
,
Science
324
,
236
(
2009
).
69.
E.
Hilner
,
A. A.
Zakharov
,
K.
Schulte
,
P.
Kratzer
,
J. N.
Anderson
,
E.
Lundgren
, and
A.
Mikkelsen
,
Nano Lett.
9
,
2710
(
2009
).
70.
J.
Tersoff
, private communication (March 11,
2010
).
You do not currently have access to this content.