In this paper we show that experimentally realizable apparently piezoelectric thin-film superlattices can be created from nonpiezoelectric materials provided an odd-order (e.g., trilayer) stacking sequence is used. The size-dependent mechanism of flexoelectricity, which couples gradients of strain to polarization, allows such a possibility. We present closed-form analytical expressions for the response of various thin-film and superlattice configurations. We also clarify some of the subtleties that arise in considering interface boundary conditions in the theory of flexoelectricity as well as the relationship of flexoelectricity to the frequently used polarization gradient terms used in modeling ferroelectrics. We find that for certain (optimum) material combinations and length scales, thin-film superlattices yielding apparent piezoelectricity close to 75% of ferroelectric barium titanate may be achievable.

1.
J. F.
Nye
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
(
Oxford University Press
,
New York
,
1985
), Reprint edition.
2.
A.
Askar
,
P. C. Y.
Lee
, and
A. S.
Cakmak
,
Int. J. Solids Struct.
7
,
523
(
1971
).
3.
A. K.
Tagantsev
,
Phys. Rev. B
34
,
5883
(
1986
).
4.
A. K.
Tagantsev
,
Phase Transitions
35
,
119
(
1991
).
5.
R.
Maranganti
and
P.
Sharma
,
Phys. Rev. B
80
,
054109
(
2009
).
6.
T.
Dumitrica
,
C. M.
Landis
, and
B. I.
Yakobson
,
Chem. Phys. Lett.
360
,
182
(
2002
).
7.
S. V.
Kalinin
and
V.
Meunier
,
Phys. Rev. B
77
,
033403
(
2008
).
8.
S. M.
Kogan
,
Fiz. Tverd. Tela (Leningrad)
5
,
2829
(
1963
).
9.
M.
Marvan
and
A.
Havránek
,
Prog. Colloid Polym. Sci.
78
,
33
(
1988
).
10.
V. L.
Indenbom
,
V. B.
Loginov
, and
M. A.
Osipov
,
Kristallografiya
28
,
1157
(
1981
).
11.
M.
Marvan
and
A.
Havránek
,
Solid State Commun.
101
,
493
(
1997
).
12.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
78
,
2920
(
2001
).
13.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
79
,
4420
(
2001
).
14.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
81
,
3440
(
2002
).
15.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
82
,
3923
(
2003
).
16.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
88
,
232902
(
2006
).
17.
J. Y.
Fu
,
W.
Zhu
,
N.
Li
, and
L. E.
Cross
,
J. Appl. Phys.
100
,
024112
(
2006
).
18.
W.
Ma
and
L. E.
Cross
,
Appl. Phys. Lett.
86
,
072905
(
2005
).
19.
P.
Zubko
,
G.
Catalan
,
A.
Buckley
,
P. R. L.
Welche
, and
J. F.
Scott
,
Phys. Rev. Lett.
99
,
167601
(
2007
).
20.
G.
Catalan
,
L. J.
Sinnamon
, and
J. M.
Gregg
,
J. Phys.: Condens. Matter
16
,
2253
(
2004
).
21.
J.
Fousek
,
L. E.
Cross
, and
D. B.
Litvin
,
Mater. Lett.
39
,
287
(
1999
).
22.
E. A.
Eliseev
,
A. N.
Morozovska
,
M. D.
Glinchuk
, and
R.
Blinc
,
Phys. Rev. B
79
,
165433
(
2009
).
23.
R.
Maranganti
,
N. D.
Sharma
, and
P.
Sharma
,
Phys. Rev. B
74
,
014110
(
2006
).
24.
E. A.
Eliseev
and
A. N.
Morozovska
,
J. Mater. Sci.
44
,
5149
(
2009
).
25.
N. D.
Sharma
,
R.
Maranganti
, and
P.
Sharma
,
J. Mech. Phys. Solids
55
,
2328
(
2007
).
26.
27.
M. S.
Majdoub
,
P.
Sharma
, and
T.
Cagin
,
Phys. Rev. B
77
,
125424
(
2008
).
28.
M. S.
Majdoub
,
P.
Sharma
, and
T.
Cagin
,
Phys. Rev. B
78
,
121407
(R) (
2008
).
29.
M. S.
Majdoub
and
P.
Sharma
,
Phys. Rev. B
79
,
115412
(
2009
).
30.
J.
Yang
,
Special Topics in the Theory of Piezoelectricity
(
Springer
,
New York
,
2009
).
31.
R. D.
Mindlin
,
Int. J. Solids Struct.
8
,
369
(
1972
).
32.
R. D.
Mindlin
,
Int. J. Solids Struct.
4
,
637
(
1968
).
33.
A.
Askar
,
P. C. Y.
Lee
, and
A. S.
Cakmak
,
Phys. Rev. B
1
,
3525
(
1970
).
34.
V. S.
Maskevich
and
K. V.
Tolpygo
,
Sov. Phys. JETP
5
,
435
(
1957
).
35.
R. D.
Mindlin
,
Int. J. Solids Struct.
5
,
1197
(
1969
).
36.
R. D.
Mindlin
,
J. Appl. Math. Mech.
35
,
404
(
1971
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics: Course of Theoretical Physics
(
Butterworth-Heinemann
,
London
,
1984
), Vol.
5
.
You do not currently have access to this content.