The energy band gap, the band alignment with Si, and the chemical bonding of 4–5 nm thick (TbxSc1x)2O3 dielectric films were investigated as a function of composition. Films with x=0, 0.5, and 1 were prepared by a molecular beam deposition technique on silicon substrates. The structure of the dielectric films was characterized by high resolution transmission electron microscopy. We found that upon deposition, a silicate and a silicon oxide layer were formed at the dielectric/silicon interface for all compositions. X-ray photoelectron spectroscopy was used to determine the band gap, as well as the energy band alignment with Si and the chemical structure of the films. Energy gap values of 6.0±0.2 and 7.5±0.2eV were obtained for pure Sc2O3 and Tb2O3, respectively, while for the mixed layer (x=0.5) a value of 6.8±0.2eV was extracted. It was found that the valence band offset does not change with Sc addition to Tb2O3, while the conduction band offset increases with x, from a value of 2.9±0.2eV for the x=0 (pure Sc2O3) to a value of 5.7±0.2eV for x=1 (pure Tb2O3).

1.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
2.
K.
Kakushima
,
K.
Tsutsui
,
S.
Ohmi
,
P.
Ahmet
,
V. R.
Rao
, and
H.
Iwai
,
Appl. Phys. (Berlin)
106
,
345
(
2007
).
3.
P. W.
Peacock
and
J.
Robertson
,
J. Appl. Phys.
92
,
4712
(
2002
).
4.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
5.
H.
Ono
and
T.
Katsumate
,
Appl. Phys. Lett.
78
,
1832
(
2001
).
6.
T.
Hattori
,
T.
Yoshida
,
T.
Shiraishi
,
K.
Takahashi
,
H.
Nohira
,
S.
Joumori
,
K.
Nakajima
,
M.
Suzuki
,
K.
Kimura
,
I.
Kashiwagi
,
C.
Ohshima
,
S.
Ohmi
, and
H.
Iwai
,
Microelectron. Eng.
72
,
283
(
2004
).
7.
K.
Frohlich
,
R.
Luptak
,
E.
Dobrocka
,
K.
Husekova
,
K.
Cico
,
A.
Rosova
,
M.
Lukosius
,
A.
Abrutis
,
P.
Pisecny
, and
J. P.
Espinos
,
Mater. Sci. Semicond. Process.
9
,
1065
(
2006
).
8.
T.
Gougousi
,
M. J.
Kelly
,
D. B.
Terry
, and
G. N.
Parsons
,
J. Appl. Phys.
93
,
1691
(
2003
).
9.
S.
Guha
,
E.
Cartier
,
M. A.
Gribelyuk
,
N. A.
Bojarczuk
, and
M. C.
Copel
,
Appl. Phys. Lett.
77
,
2710
(
2000
).
10.
S. Y.
Shah
, EE724-Nanoelectronics (
2008
).
11.
P.
de Rouffignac
,
A. P.
Yousef
,
K. H.
Kim
, and
R. G.
Gordon
,
Electrochem. Solid-State Lett.
9
, F
45
(
2006
).
12.
D.
Xue
,
K.
Betzler
, and
H.
Hesse
,
J. Phys.: Condens. Matter
12
,
3113
(
2000
).
13.
S.
Guha
,
E.
Cartier
,
N. A.
Bojarczuk
,
J.
Bruley
,
L.
Gignac
, and
J.
Karasinski
,
J. Appl. Phys.
90
,
512
(
2001
).
14.
K.
Chiba
and
Y.
Takenaka
,
Appl. Surf. Sci.
254
,
2534
(
2008
).
15.
S.
Jeon
and
H.
Hwang
,
J. Appl. Phys.
93
,
6393
(
2003
).
16.
H. C.
Lu
,
E. P.
Gusev
,
E.
Garfunkel
, and
T.
Gustafsson
,
Surf. Sci.
351
,
111
(
1996
).
17.
P.
Morgen
,
A.
Bahari
,
U.
Robenhagen
,
J. F.
Andersen
,
J. K.
Hansen
,
K.
Pedersen
,
M. G.
Rao
, and
S. Z.
Li
,
J. Vac. Sci. Technol. A
23
,
201
(
2005
).
18.
Binary rare earth oxides
, edited by
G.
Adachi
,
N.
Imanaka
, and
Z. C.
Kang
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
2004
), Vol.
119
.
19.
S.
Miyazaki
,
Appl. Surf. Sci.
190
,
66
(
2002
).
20.
J. J.
Chen
,
B. P.
Gila
,
M.
Hlad
,
A.
Gerger
,
F.
Ren
,
C. R.
Abernathy
, and
S. J.
Pearton
,
Appl. Phys. Lett.
88
,
142115
(
2006
).
21.
J.
Robertson
and
K.
Xiong
,
Appl. Phys. (Berlin)
106
,
313
(
2007
).
22.
P. P.
Rushton
,
D. G.
Tozer
, and
S. J.
Clark
,
Phys. Rev. B
65
,
235203
(
2002
).
You do not currently have access to this content.