We present a comprehensive investigation of the low-field hole mobility in strained Ge and III-V (GaAs, GaSb, InSb, and In1xGaxAs) p-channel inversion layers with both SiO2 and high-κ insulators. The valence (sub)band structure of Ge and III-V channels, relaxed and under biaxial strain (tensile and compressive) is calculated using an efficient self-consistent method based on the six-band kp perturbation theory. The hole mobility is then computed using the Kubo–Greenwood formalism accounting for nonpolar hole-phonon scattering (acoustic and optical), surface roughness scattering, polar phonon scattering (III-Vs only), alloy scattering (alloys only) and remote phonon scattering, accounting for multisubband dielectric screening. As expected, we find that Ge and III-V semiconductors exhibit a mobility significantly larger than the “universal” Si mobility. This is true for MOS systems with either SiO2 or high-κ insulators, although the latter ones are found to degrade the hole mobility compared to SiO2 due to scattering with interfacial optical phonons. In addition, III-Vs are more sensitive to the interfacial optical phonons than Ge due to the existence of the substrate polar phonons. Strain—especially biaxial tensile stress for Ge and biaxial compressive stress for III-Vs (except for GaAs)—is found to have a significant beneficial effect with both SiO2 and HfO2. Among strained p-channels, InSb exhibits the largest mobility enhancement. In0.7Ga0.3As also exhibits an increased hole mobility compared to Si, although the enhancement is not as large. Finally, our theoretical results are favorably compared with available experimental data for a relaxed Ge p-channel with a HfO2 insulator.

1.
A.
Cros
,
K.
Romanjek
,
D.
Fleury
,
S.
Harrison
,
R.
Cerutti
,
P.
Coronel
,
B.
Dumont
,
A.
Pouydebasque
,
R.
Wacquez
,
B.
Duriez
, et al.,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
663
.
2.
V.
Barral
,
T.
Poiroux
,
J.
Saint-Martin
,
D.
Munteanu
,
J. -L.
Autran
, and
S.
Deleonibus
,
IEEE Trans. Electron Devices
56
,
408
(
2009
).
3.
V.
Barral
,
T.
Poiroux
,
D.
Munteanu
,
J. -L.
Autran
, and
S.
Deleonibus
,
IEEE Trans. Electron Devices
56
,
420
(
2009
).
4.
R.
Chau
,
Solid State Technol.
51
,
30
(
2008
).
5.
M. L.
Lee
,
C. W.
Leitz
,
Z.
Cheng
,
A. J.
Pitera
,
T.
Langdo
,
M. T.
Currie
,
G.
Taraschi
,
E. A.
Fitzgerald
, and
D. A.
Antoniadis
,
Appl. Phys. Lett.
79
,
3344
(
2001
).
6.
H.
Shang
,
H.
Okorn-Schimdt
,
J.
Ott
,
P.
Kozlowski
,
S.
Steen
,
E. C.
Jones
,
H. -S. P.
Wong
, and
W.
Hanesch
,
IEEE Electron Device Lett.
24
,
242
(
2003
).
7.
A.
Ritenour
,
S.
Yu
,
M. L.
Lee
,
N.
Lu
,
W.
Bai
,
A.
Pitera
,
E. A.
Fitzgerald
,
D. L.
Kwong
, and
D. A.
Antoniadis
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
18
2
.
8.
S.
Joshi
,
C.
Krug
,
D.
Heh
,
H. J.
Na
,
H. R.
Harris
,
J. W.
Oh
,
P. D.
Kirsch
,
P.
Majhi
,
B. H.
Lee
,
H. H.
Tseng
,
R.
Jammy
,
J. C.
Lee
, and
S. K.
Banerjee
,
IEEE Trans. Elec. Device Lett.
28
,
308
(
2007
).
9.
M.
Passlack
,
R.
Droopad
,
I.
Thayne
, and
A.
Asenov
,
Solid State Technol.
51
,
26
(
2008
).
10.
M. V.
Fischetti
,
Z.
Ren
,
P. M.
Solomon
,
M.
Yang
, and
K.
Rim
,
J. Appl. Phys.
94
,
1079
(
2003
).
11.
R.
Oberhuber
,
G.
Zandler
, and
P.
Vogl
,
Phys. Rev. B
58
,
9941
(
1998
).
12.
C.
Moglestue
,
J. Appl. Phys.
59
,
3175
(
1986
).
13.
E. X.
Wang
,
P.
Matagne
,
L.
Shifren
,
B.
Obradovic
,
R.
Kotlyar
,
S.
Cea
,
M.
Stettler
, and
M. D.
Giles
,
IEEE Trans. Electron Devices
53
,
1840
(
2006
).
14.
Y.
Sun
,
S. E.
Thompson
, and
T.
Nishida
,
J. Appl. Phys.
101
,
104503
(
2007
).
15.
T.
O’Regan
and
M. V.
Fischetti
,
Jpn. J. Appl. Phys., Part 1
46
,
3265
(
2007
).
16.
A. T.
Pham
,
C.
Jungemann
, and
B.
Meinerzhagen
,
IEEE Trans. Electron Devices
54
,
2174
(
2007
).
17.
Y.
Zhang
,
M. V.
Fischetti
,
B.
Sorée
,
W.
Magnus
,
M.
Heyns
, and
M.
Meuris
,
J. Appl. Phys.
106
,
083704
(
2009
).
18.
M. V.
Fischetti
,
T.
O’Regan
,
S.
Narayanan
,
C.
Sachs
,
S.
Jin
,
J.
Kim
, and
Y.
Zhang
,
IEEE Trans. Electron Devices
54
,
2116
(
2007
).
19.
Y.
Zhang
,
J.
Kim
, and
M. V.
Fischetti
,
J. Comput. Electron.
7
,
176
(
2008
).
20.
E.
Bangert
and
G.
Landwehr
,
Surf. Sci.
58
,
138
(
1976
).
21.
A. T.
Pham
,
C.
Jungemann
, and
B.
Meinerzhagen
,
J. Comput. Electron.
7
,
99
(
2008
).
22.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
,
869
(
1955
).
23.
J. M.
Luttinger
,
Phys. Rev.
102
,
1030
(
1956
).
24.
T.
Ando
,
J. Phys. Soc. Jpn.
43
,
1616
(
1977
).
25.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
).
26.
S.
Jin
,
M. V.
Fischetti
, and
T.
Tang
,
IEEE Trans. Electron Devices
54
,
2191
(
2007
).
27.
R. W.
Kelsall
,
R. I.
Taylor
,
A. C. G.
Wood
, and
R. A.
Abram
,
Semicond. Sci. Technol.
5
,
877
(
1990
).
28.
Y.
Zhang
and
M. V.
Fischetti
,
International Workshop of Computational Electronics
7
,
176
(
2009
).
29.
M. V.
Fischetti
,
D. A.
Neumayer
, and
E. A.
Cartier
,
J. Appl. Phys.
90
,
4587
(
2001
).
30.
M. V.
Fischetti
,
J. Appl. Phys.
89
,
1232
(
2001
).
31.
M. V.
Fischetti
and
S. E.
Laux
,
J. Appl. Phys.
89
,
1205
(
2001
).
32.
R. W.
Kelsall
and
R. A.
Abram
,
Semicond. Sci. Technol.
7
,
B312
(
1992
).
33.
M. V.
Fischetti
and
S. E.
Laux
,
J. Appl. Phys.
80
,
2234
(
1996
).
34.
M. V.
Fischetti
and
S. E.
Laux
,
Phys. Rev. B
48
,
2244
(
1993
).
35.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
36.
A. L.
Fetter
and
J. D.
Walecka
,
Theoretical Mechanics of Particles and Continua
(
Dover
,
New York
,
2003
).
37.
S. Q.
Wang
and
G. D.
Mahan
,
Phys. Rev. B
6
,
4517
(
1972
).
38.
F.
Riddoch
and
B.
Ridley
,
J. Phys. C
16
,
6971
(
1983
).
39.
L.
Clavelier
,
J. F.
Damlencourt
,
C. L.
Royer
,
B.
Vincent
,
Y.
Morand
,
Y.
Campidelli
,
J. M.
Hartmann
,
E.
Martinez
,
Q. T.
Nguyen
,
S.
Cristoloveanu
 et al.,
Proceedings of the IEEE International SOI Conference
,
2007
, p.
19
.
41.
M. V.
Fischetti
,
S.
Jin
,
T. w.
Tang
,
P.
Asbeck
,
Y.
Taur
,
S.
Laux
,
M.
Rodwell
, and
N.
Sano
,
J. Comput. Electron.
8
,
60
(
2009
).
You do not currently have access to this content.