Chondrules are submillimeter-sized and spherical-shaped crystalline grains consisting mainly of silicate material observed in chondritic meteorites. We numerically simulated pattern formation of a forsterite (Mg2SiO4)-chondrule in the melt droplet using a phase-field method. Because of the large surface-to-volume ratio, the surface cooling term was introduced in the framework of this method. We reproduced an unique crystal growth pattern inside the droplet composed of two distinguishable parts; the rim that covers whole droplet surface, and dendrite inside the droplet. It was found that the rim was formed when there is a large temperature difference of 100K between the center and surface of the droplet due to the large cooling flux at the surface. In order to obtain the temperature difference, we derived temperature distribution of the droplet analytically, and concluded that the rim was formed only when the droplet cools rapidly at a rate of Rcool103Ks1. However, when the surface cooling was so large as the temperature at the droplet center still remains above the melting point, no dendrite was obtained, though the rim was formed. The double structure captures the distinctive features of barred-olivine textures observed in natural chondrules.

1.
R. H.
Jones
,
T.
Lee
,
H. C.
Connolly
, Jr.
,
S. G.
Love
, and
H.
Shang
, in
Protostars and Planets IV
, edited by
A. P.
Boss
and
S. S.
Russell
(
University of Arizona Press
,
Tucson
,
2000
), p.
927
.
2.
T.
Amelin
,
A. K.
Krot
,
I. D.
Hutcheon
, and
A. A.
Ulyanov
,
Science
297
,
1678
(
2002
).
3.
H. C.
Sorby
,
Nature (London)
15
,
495
(
1877
).
4.
L. S.
Nelson
,
M.
Blander
,
S. R.
Skaggs
, and
K.
Keil
,
Earth Planet. Sci. Lett.
14
,
338
(
1972
).
5.
A.
Tsuchiyama
,
H.
Nagahara
, and
I.
Kushiro
,
Earth Planet. Sci. Lett.
48
,
155
(
1980
).
6.
G.
Lofgren
and
W. J.
Russell
,
Geochim. Cosmochim. Acta
50
,
1715
(
1986
).
7.
R. H.
Jones
and
G. E.
Lofgren
,
Meteoritics
28
(
2
),
213
(
1993
).
8.
Y.
Osada
and
A.
Tsuchiyama
,
Lunar Planet. Sci.
32
,
1334
(
2001
).
9.
A.
Tsuchiyama
,
Y.
Osada
,
T.
Nakano
, and
K.
Uesugi
,
Geochim. Cosmochim. Acta
68
,
653
(
2004
).
10.
K.
Tsukamoto
,
H.
Satoh
,
Y.
Takamura
, and
K.
Kuribayashi
,
Antarctic Meteorites XXIV
. Papers presented to the 24th Symposium on Antartic Meteorites, NIPR, Tokyo, June 1–3,
1999
, pp.
179
191
.
11.
K.
Tsukamoto
,
H.
Kobatake
,
K.
Nagashima
,
H.
Satoh
, and
H.
Yurimoto
,
Lunar Planet. Sci.
32
,
1846
(
2001
).
12.
K.
Nagashima
,
K.
Tsukamoto
,
H.
Satoh
,
H.
Kobatake
, and
P.
Dold
,
J. Cryst. Growth
293
,
193
(
2006
).
13.
K.
Nagashima
, Ph.D. thesis,
Tohoku University
,
2006
.
14.
K.
Nagashima
,
Y.
Moriuchi
,
K.
Tsukamoto
,
K. K.
Tanaka
, and
H.
Kobatake
,
J. Min. Petr. Sci.
103
,
204
(
2008
).
15.
K. K.
Tanaka
,
T.
Yamamoto
,
K.
Nagashima
, and
K.
Tsukamoto
,
J. Cryst. Growth
310
,
1281
(
2008
).
16.
B.
Chalmers
,
Principles of Solidification
(
Wiley
,
New York
,
1964
).
17.
W. W.
Mullins
and
R. F.
Sekerka
,
J. Appl. Phys.
34
,
323
(
1963
).
18.
W. W.
Mullins
and
R. F.
Sekerka
,
J. Appl. Phys.
35
,
444
(
1964
).
19.
M. E.
Glicksman
and
A. O.
Lupulescu
,
J. Cryst. Growth
264
,
541
(
2004
).
20.
M. E.
Glicksman
and
R. J.
Schaefer
,
J. Cryst. Growth
1
,
297
(
1967
).
21.
R. F.
Sekerka
, in
Perspectives on Inorganic, Organic, and Biological Crystal Growth: From Fundamentals to Applications
, edited by
M.
Skowronski
,
J. J.
DeYoreo
, and
C. A.
Wang
(
American Institute of Physics
,
Melville, NY
,
2007
), p.
176
.
22.
H.
Miura
,
T.
Nakamoto
, and
H.
Susa
,
Icarus
160
,
258
(
2002
).
23.
M. K.
Weisberg
,
J. Geophys. Res.
92
,
E663
(
1987
).
25.
K.
Tsukamoto
, private communication.
26.
S. -L.
Wang
,
R. F.
Sekerka
,
A. A.
Wheeler
,
B. T.
Murray
,
S. R.
Coriell
,
R. J.
Braun
, and
G. B.
McFadden
,
Physica D
69
,
189
(
1993
).
27.
A. A.
Wheeler
,
B. T.
Murray
, and
R. J.
Schaefer
,
Physica D
66
,
243
(
1993
).
28.
G. B.
McFadden
,
A. A.
Wheeler
,
R. J.
Braun
,
S. R.
Coriell
, and
R. F.
Sekerka
,
Phys. Rev. E
48
,
2016
(
1993
).
29.
B. T.
Murray
,
A. A.
Wheeler
, and
M. E.
Glicksman
,
J. Cryst. Growth
154
,
386
(
1995
).
30.
S. -L.
Wang
and
R. F.
Sekerka
,
J. Comput. Phys.
127
,
110
(
1996
).
31.
T.
Uehara
and
R. F.
Sekerka
,
J. Cryst. Growth
254
,
251
(
2003
).
32.
M.
Pertermann
and
A. M.
Hofmeister
,
Am. Mineral.
91
,
1747
(
2006
).
33.
A.
Winkelmann
,
Ann. Phys. Chem.
49
,
401
(
1893
).
34.
A.
Russ
,
Sprechsaal für Keramik, Glas und Verwandten Industrien
61
,
887
(
1928
).
35.
T.
Higashino
,
Y.
Inatomi
, and
K.
Kuribayashi
,
J. Cryst. Growth
128
,
178
(
1993
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.3504655 for some movies of simulation results.
37.
T.
Noguchi
,
Antarct. Meteorite Res.
15
,
59
(
2002
).
38.
H.
Sakaguchi
and
S.
Tokunaga
,
Physica D
205
,
222
(
2005
).
39.
J. S.
Langer
and
H.
Müller-Krumbhaar
,
Acta Metall.
26
,
1681
(
1978
).
40.
J. J.
Xu
,
Interfacial Wave Theory of Pattern Formation
(
Springer-Verlag
,
Berlin, Germany
,
1998
).
41.
A.
Srivastava
,
Y.
Inatomi
,
K.
Tsukamoto
,
T.
Maki
, and
H.
Miura
,
J. Appl. Phys.
107
,
114907
(
2010
).
42.
J.
Hart
,
Can. Mineral.
16
,
547
(
1978
).
43.
E. D.
Williamson
and
L. H.
Adams
,
Phys. Rev.
14
,
99
(
1919
).

Supplementary Material

You do not currently have access to this content.