InAs/GaAs quantum dot (QD) heterostructures grown by molecular beam epitaxy are studied using cross-sectional scanning tunneling microscopy and spectroscopy. The images reveal individual InAs QDs having a lens shape with maximum base diameter of 10.5 nm and height of 2.9 nm. Analysis of strain relaxation of the QDs reveals an indium composition varying from 65% at the base of the QD, to 95% at its center, and back to 65% at its apex. Room-temperature tunneling spectra acquired 3–4 nm from the center of a dot show a peak located in the upper part of the GaAs band gap originating from the lowest electron confined state of the QD, along with a tail in the conductance extending out from the valence band and originating from QD hole states. A computational method is developed for simulating the tunneling spectra using effective-mass bands treated in an envelope function approximation. By comparison of the computations to low-current spectra, the energy of the lowest electron, and highest hole QD states are determined. These energies are found to be in reasonably good agreement both with optical measurements and prior theoretical predictions of Wang et al [Phys. Rev. B59, 5678 (1999)].

1.
D.
Bimberg
,
M.
Grundmann
, and
N. N.
Lendentsov
,
Quantum Dot Heterostructures
(
Wiley
,
New York
,
1998
).
2.
B.
Lita
,
R. S.
Goldman
,
J. D.
Phillips
, and
P. K.
Bhattacharya
,
Appl. Phys. Lett.
74
,
2824
(
1999
).
3.
H.
Eisele
,
O.
Flebbe
,
T.
Kalka
,
C.
Preinesberger
,
F.
Heinrichsdorff
,
A.
Krost
,
D.
Bimberg
, and
M.
Dähne-Preitsch
,
Appl. Phys. Lett.
75
,
106
(
1999
).
4.
D. M.
Bruls
,
J. W. A. M.
Vugs
,
P. M.
Koenraad
,
H. W. M.
Salemink
,
J. H.
Wolter
,
M.
Hopkinson
,
M. S.
Skolnick
,
F.
Long
, and
S. P. A.
Gill
,
Appl. Phys. Lett.
81
,
1708
(
2002
).
5.
J. H.
Blokland
,
M.
Bozkurt
,
J. M.
Ulloa
,
D.
Reuter
,
A. D.
Wieck
,
P. N. M.
Koenraad
,
P. C. M.
Christianen
, and
J. C.
Maan
,
Appl. Phys. Lett.
94
,
023107
(
2009
).
6.
H.
Eisele
,
A.
Lenz
,
R.
Heitz
,
R.
Timm
,
M.
Dähne
,
Y.
Temko
,
T.
Suzuki
, and
K.
Jacobi
,
J. Appl. Phys.
104
,
124301
(
2008
).
7.
T.
Yamauchi
,
Y.
Matsuba
,
L.
Bolotov
,
M.
Tabuchi
, and
A.
Nakamura
,
Appl. Phys. Lett.
77
,
4368
(
2000
).
8.
B.
Legrand
,
B.
Grandidier
,
J. P.
Nys
,
D.
Stiévenard
,
J. M.
Gérard
, and
V.
Thierry-Mieg
,
Appl. Phys. Lett.
73
,
96
(
1998
).
9.
T.
Maltezopoulos
,
A.
Bolz
,
C.
Meyer
,
C.
Heyn
,
W.
Hansen
,
M.
Morgenstern
, and
R.
Wiesendanger
,
Phys. Rev. Lett.
91
,
196804
(
2003
).
10.
J. -Q.
Lu
,
H. T.
Johnson
,
V. D.
Dasika
, and
R. S.
Goldman
,
Appl. Phys. Lett.
88
,
053109
(
2006
).
11.
A.
Urbieta
,
B.
Grandidier
,
J. P.
Nys
,
D.
Deremes
,
D.
Stiévenard
,
A.
Lemaître
,
G.
Patriarche
, and
U. M.
Niquet
,
Phys. Rev. B
77
,
155313
(
2008
).
12.
V. D.
Dasika
,
R. S.
Goldman
,
J. D.
Song
,
W. J.
Choi
,
N. K.
Cho
, and
J. I.
Lee
,
J. Appl. Phys.
106
,
014315
(
2009
).
13.
J. C.
Girard
,
A.
Lemaître
,
A.
Miard
,
C.
David
, and
Z. Z.
Wang
,
J. Vac. Sci. Technol. B
27
,
891
(
2009
).
14.
L. W.
Wang
,
J.
Kim
, and
A.
Zunger
,
Phys. Rev. B
59
,
5678
(
1999
).
15.
O.
Stier
,
M.
Grundmann
, and
D.
Bimberg
,
Phys. Rev. B
59
,
5688
(
1999
).
16.
L. W.
Wang
,
A. J.
Williamson
,
A.
Zunger
,
H.
Jiang
, and
J.
Singh
,
Appl. Phys. Lett.
76
,
339
(
2000
).
17.
A. J.
Williamson
,
L. W.
Wang
, and
A.
Zunger
,
Phys. Rev. B
62
,
12963
(
2000
).
18.
V.
Mlinar
,
M.
Bozkurt
,
J. M.
Ulloa
,
M.
Ediger
,
G.
Bester
,
A.
Badolato
,
P. M.
Koenraad
,
R. J.
Warburton
, and
A.
Zunger
,
Phys. Rev. B
80
,
165425
(
2009
).
19.
For a review, see,
R. M.
Feenstra
,
Semicond. Sci. Technol.
9
,
2157
(
1994
).
20.
S.
Gaan
,
G.
He
,
R. M.
Feenstra
,
J.
Walker
, and
E.
Towe
,
Appl. Phys. Lett.
97
,
123110
(
2010
).
21.
Y.
Dong
,
R. M.
Feenstra
,
M. P.
Semtsiv
, and
W. T.
Masselink
,
J. Appl. Phys.
103
,
073704
(
2008
).
22.
D.
Pal
and
E.
Towe
,
Appl. Phys. Lett.
88
,
153109
(
2006
).
23.
L.
Chen
,
D.
Pal
, and
E.
Towe
,
J. Cryst. Growth
251
,
208
(
2003
).
24.
R. M.
Feenstra
,
Physica B
273–274
,
796
(
1999
).
25.
We use the commercial package COMSOL, with elastic constants (in GPa) of C11=119, C12=53.8, and C44=59.9 for GaAs, and C11=83.29, C12=45.26, and C44=39.59 for InAs,;
From
Semiconductors: Group IV Elements and III-V Compounds
, edited by
O.
Madelung
(
Springer-Verlag
,
Berlin
,
1991
).
26.
V.
Ramachandran
and
R. M.
Feenstra
,
Phys. Rev. Lett.
82
,
1000
(
1999
).
27.
M.
Berthe
,
R.
Stiufiuc
,
B.
Grandidier
,
D.
Deresmes
,
C.
Delerue
, and
D.
Stiévenard
,
Science
319
,
436
(
2008
).
28.
R. M.
Feenstra
,
J. Vac. Sci. Technol. B
21
,
2080
(
2003
).
29.
R. M.
Feenstra
,
Y.
Dong
,
M. P.
Semtsiv
, and
W. T.
Masselink
,
Nanotechnology
18
,
044015
(
2007
).
30.
If accumulation or inversion of the confined state in the dot occurred then that would, of course, affect the electrostatics, but those situations do not occur in the present computations.
31.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
32.
See, e.g.,
A. R.
Smith
,
R.
Yang
,
H.
Yang
,
W. R. L.
Lambrecht
,
A.
Dick
, and
J.
Neugebauer
,
Surf. Sci.
561
,
154
(
2004
).
33.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
34.
The normalized conductance (dI/dV)/(I/V)¯ provides a very convenient means of viewing the data, but its use in quantitative analysis can lead to significant errors. Even for the case of evaluation of bulk band edge positions, significant errors can result if the spectra are not measured up to voltages sufficiently beyond the band edge (see Ref. 21). For the present case of the QD confined states, we find that the positions of the onsets of the QD states are shifted significantly by the normalization procedure.
35.
In our fits, the computed spectra are found to be completely insensitive to the number of steps (1, 2, or more) placed on the QD layers other than the one near the tip, so the computations are done for a single step at of those layers. The steps themselves are spread out over some width, comparable to or greater than the grid spacing in the problem. For the step nearest the tip a width of 2 nm is used, for the nearest-neighbor steps a width of 10 nm is used, and all other steps are spread out over 50 nm thereby forming a spatially continuous sheet of surface states.
36.
As indicated in Fig. 7, a lower limit on the value of σ derived from the fitting is 1.5nm1eV1. Concerning an upper limit, the dependence of the sum-of-squared residuals (SSR) on σ is very nonparabolic, and we can actually obtain good fits for arbitrarily large values of σ. The reason for this lack of dependence of the SSR on the value of σ is that for large σ the Fermi-level is strongly pinned (in the vicinity of the steps).
37.
The onsets of the continua representing the VB or CB are located by finding where the next higher electron state (or lower hole state) that is not a bound state is aligned with the tip Fermi-level. This procedure is appropriate for the present case of a small number of k-values and a correspondingly small unit cell size for the computation (see Sec. III); the band edges represented in these distributions should thus be interpreted as the band edges in the near-surface region. To find the actual number of bound states for each band, a computation is performed without the presence of any band bending, so that the bound states can be easily identified since their energies are beyond the band edges.
38.
M.
Nagashima
,
M.
Kibe
,
M.
Doshida
,
Y.
Uchiyama
,
Y.
Matsukura
, and
H.
Nishino
,
J. Appl. Phys.
107
,
054504
(
2010
).
39.
J.
Bardeen
,
Phys. Rev. Lett.
6
,
57
(
1961
).
40.
C. B.
Duke
,
Tunneling in Solids
(
Academic
,
New York
,
1969
), p.
217
.
41.
42.
E.
Merzbacher
,
Quantum Mechanics
, 2nd ed. (
Wiley
,
New York
,
1970
), pp.
105
108
.
You do not currently have access to this content.