Gas-saturated, solid skeleton, porous media like geomaterials, polymeric and metallic foams or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss, are still few. Accurate acoustic methods for the characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we have developed a method based on the theory and experiment of diffraction of acoustic waves by a rigid-frame, air-saturated polymeric foam in cylindrical form in the audible frequency regime. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field show that it is also dependent on the intrinsic microstructural parameters of the porous cylinder namely, porosity, tortuosity, and the flow resistivity (related to permeability).

1.
Z. E. A.
Fellah
,
F. G.
Mitri
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
,
J. Sound Vib.
302
,
746
(
2007
).
2.
J. -P.
Groby
,
E.
Ogam
,
L.
De Ryck
,
N.
Sebaa
, and
W.
Lauriks
,
J. Acoust. Soc. Am.
127
,
764
(
2010
).
3.
Ph.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
J. F.
Allard
, and
C.
Glorieux
,
Appl. Phys. Lett.
69
,
2641
(
1996
).
4.
J. Y.
Chung
and
D. A.
Blaser
,
J. Acoust. Soc. Am.
68
,
907
(
1980
).
5.
N.
Kino
and
T.
Ueno
,
Appl. Acoust.
69
,
325
(
2008
).
6.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
,
Appl. Acoust.
71
,
506
(
2010
).
7.
R.
Panneton
and
X.
Olny
,
J. Acoust. Soc. Am.
119
,
2027
(
2006
).
8.
X.
Olny
and
R.
Panneton
,
J. Acoust. Soc. Am.
123
,
814
(
2008
).
9.
Y.
Salissou
and
R.
Panneton
,
J. Appl. Phys.
101
,
124913
(
2007
).
10.
M. R.
Stinson
and
G. A.
Daigle
,
J. Acoust. Soc. Am.
83
,
2422
(
1988
).
11.
H. -S.
Tsay
and
F. -H.
Yeh
,
Appl. Acoust.
69
,
778
(
2008
).
12.
T. E.
Vigran
,
L.
Kelders
,
W.
Lauriks
,
P.
Leclaire
, and
T. F.
Johansen
,
Acta. Acust. Acust.
83
,
419
(
1997
).
13.
B. H.
Song
and
J. S.
Bolton
,
J. Acoust. Soc. Am.
113
,
1833
(
2003
).
14.
K. V.
Horoshenkov
,
A.
Khan
,
F. -X.
Bécot
,
L.
Jaouen
,
F.
Sgard
,
A.
Renault
,
N.
Amirouche
,
F.
Pompoli
,
N.
Prodi
,
P.
Bonfiglio
,
G.
Pispola
,
F.
Asdrubali
,
J.
Hübelt
,
N.
Atalla
,
C. K.
Amédin
,
W.
Lauriks
, and
L.
Boeckx
,
J. Acoust. Soc. Am.
122
,
345
(
2007
).
15.
Z. E. A.
Fellah
,
M.
Fellah
,
N.
Sebaa
,
W.
Lauriks
, and
C.
Depollier
,
J. Acoust. Soc. Am.
119
,
1926
(
2006
).
16.
Z. E. A.
Fellah
,
M.
Fellah
,
F. G.
Mitri
,
N.
Sebaa
,
C.
Depollier
, and
W.
Lauriks
,
Rev. Sci. Instrum.
78
,
114902
(
2007
).
17.
Z. E. A.
Fellah
,
M.
Fellah
,
F. G.
Mitri
,
N.
Sebaa
,
W.
Lauriks
, and
C.
Depollier
,
J. Appl. Phys.
102
,
084906
(
2007
).
18.
M. E.
Delany
and
E. N.
Bazley
,
Appl. Acoust.
3
,
105
(
1970
).
19.
20.
J. F.
Allard
,
J. Acoust. Soc. Am.
125
,
1864
(
2009
).
21.
C. J.
Hickey
,
D.
Leary
,
J. F.
Allard
, and
M.
Henry
,
J. Acoust. Soc. Am.
118
,
1503
(
2005
).
22.
S.
Schneider
,
J. Acoust. Soc. Am.
124
,
1568
(
2008
).
23.
T. K.
Stanton
,
J. Acoust. Soc. Am.
83
,
55
(
1988
).
24.
T. K.
Stanton
,
J. Acoust. Soc. Am.
83
,
64
(
1988
).
25.
D.
Benjamin Reeder
and
T. K.
Stanton
,
J. Acoust. Soc. Am.
116
,
729
(
2004
).
26.
D.
Benjamin Reeder
,
J.
Michael Jech
, and
T. K.
Stanton
,
J. Acoust. Soc. Am.
116
,
747
(
2004
).
27.
T. K.
Stanton
,
P. H.
Wiebe
, and
D.
Chu
,
J. Acoust. Soc. Am.
103
,
254
(
1998
).
28.
D. T.
DiPerna
and
T. K.
Stanton
,
J. Acoust. Soc. Am.
96
,
3064
(
1994
).
29.
J. V.
Gurley
and
T. K.
Stanton
,
J. Acoust. Soc. Am.
94
,
2746
(
1993
).
30.
V. C.
Anderson
,
J. Acoust. Soc. Am.
22
,
426
(
1950
).
31.
R. W.
Scharstein
and
A. M. J.
Davis
,
J. Acoust. Soc. Am.
121
,
3300
(
2007
).
32.
D.
Chu
,
K. G.
Foote
, and
T. K.
Stanton
,
J. Acoust. Soc. Am.
93
,
2985
(
1993
).
33.
D. T. I.
Francis
,
J. Acoust. Soc. Am.
93
,
1700
(
1993
).
34.
J. J.
Bowman
,
T. B. A.
Senior
, and
P. L. E.
Uslenghi
,
Electromagnetic and Acoustic Scattering by Simple Shapes
(
Hemisphere
,
New York
,
1987
).
35.
J. J.
Faran
, Jr.
,
J. Acoust. Soc. Am.
25
,
155
(
1953
).
36.
T. W.
Wu
,
J. Acoust. Soc. Am.
97
,
84
(
1995
).
37.
B.
Dubus
,
J. Acoust. Soc. Am.
96
,
3792
(
1994
).
38.
P. A.
Chinnery
,
J.
Zhang
, and
V. F.
Humphrey
,
J. Acoust. Soc. Am.
102
,
60
(
1997
).
39.
J. B.
Schneider
and
O. M.
Ramahi
,
J. Acoust. Soc. Am.
104
,
686
(
1998
).
40.
R.
Stacey
,
J. Acoust. Soc. Am.
98
,
261
(
1995
).
41.
F.
Schubert
,
A.
Peiffer
,
B.
Köhler
, and
T.
Sanderson
,
J. Acoust. Soc. Am.
104
,
2604
(
1998
).
42.
E.
Ogam
,
A.
Wirgin
, and
S.
Schneider
,
J. Sound Vib.
313
,
525
(
2008
).
43.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1964
).
44.
J. A.
Kong
,
Electromagnetic Wave Theory
(
EMW
,
Cambridge, Massachusetts, USA
,
2008
).
45.
Z. E. A.
Fellah
and
C.
Depollier
,
J. Acoust. Soc. Am.
107
,
683
(
2000
).
46.
Z. E. A.
Fellah
,
C.
Depollier
,
M.
Fellah
,
W.
Lauriks
, and
J. Y.
Chapelon
,
Wave Motion
41
,
145
(
2005
).
47.
Agilent, Agilent E2094S IO Libraries Suite 15.5. USA,
2009
. Data Sheet 5989-1439EN.
48.
Ph.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
M.
Melon
,
N.
Brown
, and
B.
Castagnede
,
J. Appl. Phys.
80
,
2009
(
1996
).
49.
Y.
Champoux
and
J. -F.
Allard
,
J. Appl. Phys.
70
,
1975
(
1991
).
50.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
,
J. Fluid Mech.
176
,
379
(
1987
).
51.
L.
Boeckx
,
P.
Leclaire
,
P.
Khurana
,
C.
Glorieux
,
W.
Lauriks
, and
J. F.
Allard
,
J. Acoust. Soc. Am.
117
,
545
(
2005
).
52.
N.
Geebelen
,
L.
Boeckx
,
G.
Vermeir
,
W.
Lauriks
,
J. F.
Allard
, and
O.
Dazel
,
Acta. Acust. Acust.
93
,
783
,
2007
.
53.
D. A.
Bies
and
C. H.
Hansen
,
Appl. Acoust.
13
,
357
(
1980
).
54.
C.
Partridge
,
J. Acoust. Soc. Am.
99
,
72
(
1996
).
55.
E.
Ogam
,
Z. E. A.
Fellah
,
J. -P.
Groby
,
A.
Wirgin
, and
C.
Depollier
, Résolution de problèmes inverses d’estimation de paramètres poroélastiques des matériaux poreux par inversion de données ultrasonores transmises. In 10ème Congrès Français d’Acoustique 10ème Congrès Français d’Acoustique, pages CD-ROM (6 pages), Lyon France,
2010
.
56.
F.
Chinesta
,
E.
Cueto
,
P.
Quintela
, and
J.
Paredes
,
J. Mater. Process. Technol.
155–156
,
1482
(
2004
).
57.
E.
Ogam
and
A.
Wirgin
,
Inverse Probl. Sci. Eng.
12
,
433
(
2004
).
You do not currently have access to this content.