Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400°C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150°C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5°C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420°C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.

1.
B. T.
Matthias
,
Phys. Rev.
75
,
1771
(
1949
).
2.
3.
J.
Chen
and
D.
Feng
,
Phys. Status Solidi A
109
,
427
(
1988
).
4.
X. B.
Wang
,
Z. X.
Shen
,
Z. P.
Hu
,
L.
Qin
,
S. H.
Tang
, and
M. H.
Kouk
,
J. Mol. Struct.
385
,
1
(
1996
).
5.
L. A.
Reznichenko
,
L. A.
Shilkina
,
E. S.
Gagarina
,
I. P.
Raevskii
,
E. A.
Dul’kin
,
E. M.
Kuznetsova
, and
V. V.
Akhnazarova
,
Crystallogr. Rep.
48
,
448
(
2003
).
6.
E. A.
Wood
,
Acta Crystallogr.
4
,
353
(
1951
).
7.
L. E.
Cross
and
B. J.
Nicholson
,
Philos. Mag.
46
,
376
(
1955
).
8.
I.
Lefkowitz
,
K.
Łukaszewicz
, and
H. D.
Megaw
,
Acta Crystallogr.
20
,
670
(
1966
).
9.
A. C.
Sakowski-Cowley
,
K.
Łukaszewicz
, and
H. D.
Megaw
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
25
,
851
(
1969
).
10.
M.
Ahtee
,
A. M.
Glazer
, and
H. D.
Megaw
,
Philos. Mag.
26
,
995
(
1972
).
11.
A. M.
Glazer
and
H. D.
Megaw
,
Philos. Mag.
25
,
1119
(
1972
).
12.
C. N. W.
Darlington
and
H. D.
Megaw
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
29
,
2171
(
1973
).
13.
A. M.
Glazer
and
H. D.
Megaw
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
29
,
489
(
1973
).
14.
C. N. W.
Darlington
and
K. S.
Knight
,
Physica B
266
,
368
(
1999
).
15.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature (London)
432
,
84
(
2004
).
16.
J. -F.
Li
and
K.
Wang
,
J. Am. Ceram. Soc.
89
,
706
(
2006
).
17.
I. P.
Raevskii
,
L. A.
Reznichenko
,
V. G.
Smotrakov
,
V. V.
Eremkin
,
M. A.
Malitskaya
,
E. M.
Kuznetsova
, and
L. A.
Shilkina
,
Tech. Phys. Lett.
26
,
744
(
2000
).
18.
A.
Molak
,
Solid State Commun.
62
,
413
(
1987
).
19.
L.
Pardo
,
P.
Duran-Martin
,
J. P.
Mercurio
,
L.
Nibou
, and
B.
Jiminez
,
J. Phys. Chem. Solids
58
,
1335
(
1997
).
20.
K.
Konieczny
,
Mater. Sci. Eng., B
60
,
124
(
1999
).
21.
I. P.
Raevski
and
S. A.
Prosandeev
,
J. Phys. Chem. Solids
63
,
1939
(
2002
).
22.
E.
Bouziane
,
M. D.
Fontana
, and
M.
Ayadi
,
J. Phys.: Condens. Matter
15
,
1387
(
2003
).
23.
T.
Wada
,
K.
Tsuji
,
T.
Saito
, and
Y.
Matsuo
,
Jpn. J. Appl. Phys., Part 1
42
,
6110
(
2003
).
24.
A.
Castro
,
B.
Jimenez
,
T.
Hungria
,
A.
Moure
, and
L.
Pardo
,
J. Eur. Ceram. Soc.
24
,
941
(
2004
).
25.
Y. I.
Yuzyuk
,
P.
Simon
,
E.
Gagarina
,
L.
Hennet
,
D.
Thiaudiere
,
V. I.
Torgashev
,
S. I.
Raevskaya
,
I. P.
Raevskii
,
L. A.
Reznitchenko
, and
J. L.
Sauvajol
,
J. Phys.: Condens. Matter
17
,
4977
(
2005
).
26.
B.
Jaffe
,
W. R.
Cook
 Jr.
, and
H.
Jaffe
,
Piezoelectric Ceramics
, 1st ed. (
Academic
,
London, New York
,
1971
), Chap. 8, p.
185
.
27.
R. H.
Dungan
and
R. D.
Golding
,
J. Am. Ceram. Soc.
47
,
73
(
1964
).
28.
Y.
Shiratori
,
A.
Magrez
,
W.
Fischer
,
C.
Pithan
, and
R.
Waser
,
J. Phys. Chem. C
111
,
18493
(
2007
).
29.
V. A.
Shuvaeva
,
M. Y.
Antipin
,
S. V.
Lindeman
,
O. E.
Fesenko
,
V. G.
Smotrakov
, and
Y. T.
Struchkov
,
Ferroelectrics
141
,
307
(
1993
).
30.
Y.
Shiratori
,
A.
Magrez
,
J.
Dornseiffer
,
F. H.
Haegel
,
C.
Pithan
, and
R.
Waser
,
J. Phys. Chem. B
109
,
20122
(
2005
).
31.
V.
Petricek
and
M.
Dusek
,
The Crystallographic Computing System JANA2006
(
Institute of Physics, Academy of Sciences of the Czech Republic
,
Praha
,
2006
).
32.
R.
Pirc
and
R.
Blinc
,
Phys. Rev. B
76
,
020101
(R) (
2007
).
33.
R.
Jiménez
,
M. L.
Sanjuan
, and
B.
Jimenez
,
J. Phys.: Condens. Matter
16
,
7493
(
2004
).
34.
C.
Ang
,
Z.
Yu
, and
Z.
Jing
,
Phys. Rev. B
61
,
957
(
2000
).
35.
JCPDS-ICDD, PCPDFWIN Version 2.2 (International Centre for Diffraction Data,
2001
).
36.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
32
,
751
(
1976
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.3512980 for all calculated Na-O interatomic distances in the coordination sphere of Na obtained from the NaNbO3 structural refinement for RT, 250°C, 300°C, and 420°C.

Supplementary Material

You do not currently have access to this content.