Wafer diameters for microelectronics fabrication will soon transition from 300 to 450 mm at a time when excitation frequencies for capacitively coupled plasmas (CCPs) are increasing to 200 MHz or higher. Already for 300 mm tools, there is evidence that wave behavior (i.e., propagation, constructive, and destructive interference) affects the uniformity of processing. The increase in diameter to 450 mm is likely to exacerbate these effects, perhaps requiring nontraditional tool designs. This is particularly important in dual frequency (DF) CCP tools in which there are potential interactions between frequencies. In this paper, results from a two-dimensional computational investigation of Ar plasma properties in a 450 mm DF-CCP reactor, incorporating a full-wave solution of Maxwell’s equations, are discussed. As in 300 mm DF-CCP reactors, the electron density collapses toward the center of the reactor with increasing high frequency , however, with more pronounced finite wavelength effects. Graded conductivity electrodes with multilayer of dielectrics are computationally demonstrated as a possible means to suppress wave effects thereby increasing plasma uniformity. Segmentation of the electrode also improves the plasma uniformity by making the electrical distance between the feeds and the sheath edges as uniform as possible.
Skip Nav Destination
Article navigation
1 December 2010
Research Article|
December 10 2010
450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes
Yang Yang;
Yang Yang
a)
1Department of Electrical and Computer Engineering,
Iowa State University
, Ames, Iowa 50011, USA
Search for other works by this author on:
Mark J. Kushner
Mark J. Kushner
b)
2Department of Electrical Engineering and Computer Science,
University of Michigan
, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, USA
Search for other works by this author on:
a)
Present address: Applied Materials Inc., 974 E. Arques Ave., Sunnyvale, CA 94085. Electronic mail: yang_yang@amat.com.
b)
Author to whom correspondence should be addressed. Electronic mail: mjkush@umich.edu.
J. Appl. Phys. 108, 113306 (2010)
Article history
Received:
September 01 2010
Accepted:
October 15 2010
Citation
Yang Yang, Mark J. Kushner; 450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes. J. Appl. Phys. 1 December 2010; 108 (11): 113306. https://doi.org/10.1063/1.3517104
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00