We investigated the effects of laser wavelength on the atomic, ionic, and radiative emission from laser-produced tin plasmas. For generating plasmas, planar tin targets were excited using either high intensity neodymium-doped yttrium aluminum garnet (Nd:YAG, 1.06μm) or carbon dioxide (CO2, 10.6μm) laser pulses; both are considered to be potential excitation lasers for an extreme ultraviolet (EUV) lithography laser-produced plasma light source. Various diagnostic tools were utilized for investigating ionic, neutral, and radiative emission from Sn plasmas including Faraday cup, witness plate in conjunction with x-ray photoelectron spectroscopy (XPS), EUV, and visible emission spectroscopy and photography. Atomic and ionic analysis showed that the amount of debris emitted by the Nd:YAG generated plasmas was considerably higher than the CO2 laser-produced plasmas. The angular distributions of both atomic and ionic debris were found to be more forward-centric for the 1.06μm generated plasma while being much more uniform for the 10.6μm heated plasma. EUV and visible emission images of the plasma also showed a forward-centric appearance for 1.06μm heated plasmas. The strength of excited neutral emission was considerably lower for the case of the 10.6μm plasma while the kinetic energies of ions debris were found to be much higher for CO2 generated plasmas. Surface analysis of the craters created by the lasers showed that the mass ablation rate is 3.6 times higher for Nd:YAG laser generated plasmas compared to CO2 generated plasmas at maximum EUV emission.

1.
G. E.
Moore
,
Proc. IEEE
86
,
82
(
1998
).
2.
J. M.
Slaughter
,
D. W.
Schulze
,
C. R.
Hills
,
A.
Mirone
,
R.
Stalio
,
R. N.
Watts
,
C.
Tarrio
,
T. B.
Lucatorto
,
M.
Krumrey
,
P.
Mueller
, and
C. M.
Falco
,
J. Appl. Phys.
76
,
2144
(
1994
).
3.
A.
Hassanein
,
V.
Sizyuk
,
T.
Sizyuk
, and
S. S.
Harilal
,
J. Micro/Nanolith. MEMS MOEMS
8
,
041503
(
2009
).
4.
R. A.
Burdt
,
S.
Yuspeh
,
K. L.
Sequoia
,
Y. Z.
Tao
,
M. S.
Tillack
, and
F.
Najmabadi
,
J. Appl. Phys.
106
,
033310
(
2009
).
5.
J.
White
,
A.
Cummings
,
P.
Dunne
,
P.
Hayden
, and
G.
O'Sullivan
,
J. Appl. Phys.
101
,
043301
(
2007
).
6.
A.
Takahashi
,
D.
Nakamura
,
K.
Tamaru
,
T.
Akiyama
, and
T.
Okada
,
Appl. Phys. B: Lasers Opt.
92
,
73
(
2008
).
7.
S. S.
Harilal
,
R. W.
Coons
,
P.
Hough
, and
A.
Hassanein
,
Appl. Phys. Lett.
95
,
221501
(
2009
).
8.
V.
Bakshi
,
EUV Lithography
(
SPIE
,
New York
,
2009
).
9.
A.
Nagano
,
T.
Mochizuki
,
S.
Miyamoto
, and
S.
Amano
,
Appl. Phys. Lett.
93
,
091502
(
2008
).
10.
A.
Sasaki
,
K.
Nishihara
,
M.
Murakami
,
F.
Koike
,
T.
Kagawa
,
T.
Nishikawa
,
K.
Fujima
,
T.
Kawamura
, and
H.
Furukawa
,
Appl. Phys. Lett.
85
,
5857
(
2004
).
11.
Y.
Tao
,
M. S.
Tillack
,
S.
Yuseph
,
R.
Burdt
, and
F.
Najmabadi
,
Appl. Phys. B: Lasers Opt.
99
,
397
(
2010
).
12.
S. S.
Harilal
,
T.
Sizyuk
,
V.
Sizyuk
, and
A.
Hassanein
,
Appl. Phys. Lett.
96
,
111503
(
2010
).
13.
J.
White
,
P.
Dunne
,
P.
Hayden
,
F.
O'Reilly
, and
G.
O'Sullivan
,
Appl. Phys. Lett.
90
,
181502
(
2007
).
14.
S. S.
Harilal
,
B.
O'Shay
,
M. S.
Tillack
,
Y.
Tao
,
R.
Paguio
,
A.
Nikroo
, and
C. A.
Back
,
J. Phys. D
39
,
484
(
2006
).
15.
D.
Campos
,
S. S.
Harilal
, and
A.
Hassanein
,
Appl. Phys. Lett.
96
,
151501
(
2010
).
16.
J. P.
Allain
,
M.
Nieto
,
M. R.
Hendricks
,
P.
Plotkin
,
S. S.
Harilal
, and
A.
Hassanein
,
Rev. Sci. Instrum.
78
,
113105
(
2007
).
17.
T.
Feigl
,
S.
Yulin
,
T.
Kuhlmann
, and
N.
Kaiser
,
Jpn. J. Appl. Phys., Part 1
41
,
4082
(
2002
).
18.
S.
Namba
,
S.
Fujioka
,
H.
Sakaguchi
,
H.
Nishimura
,
Y.
Yasuda
,
K.
Nagai
,
N.
Miyanaga
,
Y.
Izawa
,
K.
Mima
,
K.
Sato
, and
K.
Takiyama
,
J. Appl. Phys.
104
,
013305
(
2008
).
19.
S. S.
Harilal
,
M. S.
Tillack
,
Y.
Tao
,
B.
O’Shay
,
R.
Paguio
, and
A.
Nikroo
,
Opt. Lett.
31
,
1549
(
2006
).
20.
S. S.
Harilal
,
B.
O’Shay
,
Y.
Tao
, and
M. S.
Tillack
,
Appl. Phys. B: Lasers Opt.
86
,
547
(
2007
).
21.
S.
Bollanti
,
P.
Di Lazzaro
,
F.
Flora
,
L.
Mezi
,
D.
Murra
, and
A.
Torre
,
Appl. Phys. B: Lasers Opt.
96
,
479
(
2009
).
22.
H.
Komori
,
Y.
Imai
,
G.
Soumagne
,
T.
Abe
,
T.
Suganuma
, and
A.
Endo
,
Proc. SPIE
5751
,
859
(
2005
).
23.
N.
Hurst
and
S. S.
Harilal
,
Rev. Sci. Instrum.
80
,
035101
(
2009
).
24.
CasaXPS Software Ltd.
, www.casaxps.com (
2009
).
25.
M. P.
Seah
, in
Quantitative Microbeam Analysis
, edited by
A. G.
Fitzgerald
,
B. E.
Storey
, and
D.
Fabian
(
The Scottish Universities Summer School in Physics
,
Great Yarmouth, Norfolk
,
1993
), p.
1
.
26.
S. S.
Harilal
,
J. P.
Allain
,
A.
Hassanein
,
M. R.
Hendricks
, and
M.
Nieto-Perez
,
Appl. Surf. Sci.
255
,
8539
(
2009
).
27.
J. J.
Chang
and
B. E.
Warner
,
Appl. Phys. Lett.
69
,
473
(
1996
).
28.
R. W.
Coons
,
S. S.
Harilal
,
D.
Campos
, and
A.
Hassanein
,
J. Appl. Phys.
108
,
063306
(
2010
).
29.
A.
Thum-Jager
and
K.
Rohr
,
J. Phys. D
32
,
2827
(
1999
).
30.
P. T.
Rumsby
and
J. W. M.
Paul
,
Plasma Phys. Controlled Fusion
16
,
247
(
1974
).
31.
R. A.
Burdt
,
Y. Z.
Tao
,
M. S.
Tillack
,
S.
Yuspeh
,
N. M.
Shaikh
,
E.
Flaxer
, and
F.
Najmabadi
,
J. Appl. Phys.
107
,
043303
(
2010
).
32.
A.
Hassanein
,
V.
Sizyuk
,
S. S.
Harilal
, and
T.
Sizyuk
,
Proc. SPIE
7636
,
76360A
(
2010
).
33.
S. S.
Harilal
,
C. V.
Bindhu
,
M. S.
Tillack
,
F.
Najmabadi
, and
A. C.
Gaeris
,
J. Appl. Phys.
93
,
2380
(
2003
).
34.
S. S.
Harilal
,
J. Appl. Phys.
102
,
123306
(
2007
).
35.
Y.
Ralchenko
,
A. E.
Kramida
,
J.
Reader
, and
NIST ASD Team
, National Institute of Standards and Technology,
2008
.
You do not currently have access to this content.