The molecular dynamics simulation (MD) method has been widely applied to the investigation of the thermal conductivity of single crystalline materials during last decade but no report on the thermal conductivity of polycrystalline solids by direct MD simulation with three-dimensional polycrystalline structure is found so far. In this paper, the periodic configuration of nanocrystalline argon for MD simulation is constructed based on the Voronoi tessellation method. The thermal conductivity of both perfect single crystal and nanocrystalline bulk argon are calculated by the Green–Kubo method. The results are compared with experiments as well as MD simulation results reported by others. The thermal conductivity of nanocrystalline argon with the average grain size of 5 nm is much lower than that of the corresponding perfect single crystal at temperatures between 10 and 70 K. The reduction can be attributed to grain boundary thermal resistance due to large number of grain interfaces in polycrystalline argon, as well as their limitation on the phonon mean free path. The magnitude of estimated grain boundary thermal resistance at different temperatures is on the scale of 109m2K/W. The grain boundary thermal resistance is larger at lower temperature. This report demonstrates that the thermal property of polycrystalline materials can be investigated by MD simulation.

1.
A. V.
Inyushkin
,
A. N.
Taldenkov
,
V. G.
Ral’chenko
,
V. I.
Konov
,
A. V.
Khomich
, and
R. A.
Khmel’nitskiǐ
,
J. Exp. Theor. Phys.
107
,
462
(
2008
).
2.
A. M.
Greenstein
,
S.
Graham
,
Y. C.
Hudiono
, and
S.
Nair
,
Nanoscale Microscale Thermophys. Eng.
10
,
321
(
2006
).
3.
S.
Kumar
and
R. N.
Singh
,
J. Am. Ceram. Soc.
78
,
728
(
1995
).
4.
Q. G.
Zhang
,
B. Y.
Cao
,
X.
Zhang
,
M.
Fujii
, and
K.
Takahashi
,
J. Phys.: Condens. Matter
18
,
7937
(
2006
).
5.
G.
Soyez
,
J. A.
Eastman
,
L. J.
Thompson
,
G. -R.
Bai
,
P. M.
Baldo
, and
A. W.
McCormick
,
Appl. Phys. Lett.
77
,
1155
(
2000
).
6.
E. V.
Ivakin
,
A. V.
Sukhodolov
,
V. G.
Ralchenko
,
A. V.
Vlasov
, and
A. V.
Khomich
,
Quantum Electron.
32
,
367
(
2002
).
7.
S. C.
Wang
,
X. G.
Liang
,
X. H.
Xu
, and
T.
Ohara
,
J. Appl. Phys.
105
,
014316
(
2009
).
8.
H.
Wang
,
Y.
Xu
, and
M.
Shimono
,
Mater. Trans.
48
,
2419
(
2007
).
9.
A.
Skye
and
P. K.
Schelling
,
J. Appl. Phys.
103
,
113524
(
2008
).
10.
S.
Sinha
,
P. K.
Schelling
,
S. R.
Phillpot
, and
K. E.
Goodson
,
J. Appl. Phys.
97
,
023702
(
2005
).
11.
X. G.
Liang
,
B.
Yue
, and
S.
Maruyama
,
J. Enhanced Heat Transfer
14
,
233
(
2007
).
12.
X. G.
Liang
,
Chin. Sci. Bull.
52
,
2457
(
2007
).
13.
Z.
Zhong
and
X.
Wang
,
J. Appl. Phys.
100
,
044310
(
2006
).
14.
M. A.
Angadi
,
T.
Watanabe
,
A.
Bodapati
,
X.
Xiao
,
O.
Auciello
,
J. A.
Carlisle
,
J. A.
Eastman
,
P.
Keblinski
,
P. K.
Schelling
, and
S. R.
Phillpot
,
J. Appl. Phys.
99
,
114301
(
2006
).
15.
T.
Watanabe
,
S. B.
Sinnott
,
J. S.
Tulenko
,
R. W.
Grimes
,
P. K.
Schelling
, and
S. R.
Phillpot
,
J. Nucl. Mater.
375
,
388
(
2008
).
16.
L. V.
Brutzel
,
E.
Vincent-Aublant
, and
J. -M.
Delaye
,
Nucl. Instrum. Methods Phys. Res. B
267
,
3013
(
2009
).
17.
M.
Nygårds
and
P.
Gudmundson
,
Comput. Mater. Sci.
24
,
513
(
2002
).
18.
Y.
Zhao
and
R.
Tryon
,
Comput. Methods Appl. Mech. Eng.
193
,
3919
(
2004
).
19.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
New York
,
2004
).
20.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
21.
J.
Schiøtz
,
F. D. D.
Tolla
, and
K. W.
Jacobsen
,
Nature (London)
391
,
561
(
1998
).
22.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
,
B. L.
Holian
,
D.
Kadau
,
P.
Entel
,
M.
Kreth
,
F.
Westerhoff
, and
D. E.
Wolf
,
Metall. Mater. Trans. A
35
,
2719
(
2004
).
23.
S. R.
Phillpot
,
D.
Wolf
, and
H.
Gleiter
,
J. Appl. Phys.
78
,
847
(
1995
).
24.
C. H.
Rycroft
,
G. S.
Grest
,
J. W.
Landry
, and
M. Z.
Bazant
,
Phys. Rev. E
74
,
021306
(
2006
).
25.
F.
Fritzen
,
T.
Böhlke
, and
E.
Schnack
,
Proc. Appl. Math. Mech.
8
,
10545
(
2008
).
26.
F.
Fritzen
,
T.
Böhlke
, and
E.
Schnack
,
Comput. Mech.
43
,
701
(
2009
).
27.
H.
Kaburaki
,
J.
Li
, and
S.
Yip
,
Thermal Conductivity of Solid Argon by Classical Molecular Dynamics
,
MRS Symposia Proceedings
No. 538 (
Materials Research Society
,
Pittsburgh
,
1999
), p.
503
.
28.
K. V.
Tretiakov
and
S.
Scandolo
,
J. Chem. Phys.
120
,
3765
(
2004
).
29.
H.
Kaburaki
,
Handbook of Materials Modeling
(
Springer
,
Netherlands
,
2005
).
30.
S.
Choi
and
S.
Maruyama
,
J. Korean Phys. Soc.
43
,
747
(
2003
).
31.
D. K.
Christen
and
G. L.
Pollack
,
Phys. Rev. B
12
,
3380
(
1975
).
32.
D.
Kotchetkov
and
A. A.
Balandin
,
Modeling of Thermal Conductivity of Polycrystalline GaN Films
,
MRS Symposia Proceedings
No. 764 (
Materials Research Society
,
Pittsburgh
,
2003
), p.
215
.
33.
F.
Haenssler
,
K.
Gamper
, and
B.
Serin
,
J. Low Temp. Phys.
3
,
23
(
1970
).
34.
G. J.
Keeler
and
D. N.
Batchelder
,
J. Phys. C
3
,
510
(
1970
).
35.
H.
Yang
,
G. -R.
Bai
,
L. J.
Thompson
, and
J. A.
Eastman
,
Acta Mater.
50
,
2309
(
2002
).
36.
S.
Ju
,
X.
Liang
, and
S.
Wang
,
J. Phys. D: Appl. Phys.
43
,
085407
(
2010
).
37.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
50
,
3977
(
2007
).
You do not currently have access to this content.